FORMATION OF HYDROGEL IN THE PRESENCE OF PEROXIDASE AND LOW CONCENTRATION OF HYDROGEN PEROXIDE
    1.
    发明申请
    FORMATION OF HYDROGEL IN THE PRESENCE OF PEROXIDASE AND LOW CONCENTRATION OF HYDROGEN PEROXIDE 有权
    在过氧化氢存在下形成水合物,过氧化氢浓度低

    公开(公告)号:US20120177604A1

    公开(公告)日:2012-07-12

    申请号:US13336783

    申请日:2011-12-23

    摘要: In a process of forming a hydrogel from a mixture comprising hydrogen peroxide (H2O2), horseradish peroxidase (HRP), and a polymer comprising a crosslinkable phenol group, the gelation rate in the solution and the crosslinking density in the hydrogel can be independently adjusted or controlled by selection of the molarity of H2O2 and concentration of HRP in the solution when the molarity of H2O2 is limited to be within a range and the concentration of HRP is limited to be above a threshold. A method for determining the range and threshold is disclosed. The hydrogel may be used to grow cells, in which case, the molarity of H2O2 may be selected to affect the differentiation or growth rate of the cells in the hydrogel. Also, the hydrogel system may be used for sustained delivery of a therapeutic protein, for example in the treatment of liver cancer, fibrosis or hepatitis.

    摘要翻译: 在由包含过氧化氢(H 2 O 2),辣根过氧化物酶(HRP)和包含可交联酚基的聚合物的混合物形成水凝胶的方法中,可以独立地调节溶液中的凝胶化速率和水凝胶中的交联密度, 当H 2 O 2的摩尔浓度被限制在一个范围内并且HRP的浓度被限制在高于阈值时,通过选择H 2 O 2的摩尔浓度和HRP浓度来控制。 公开了一种用于确定范围和阈值的方法。 水凝胶可用于生长细胞,在这种情况下,可以选择H2O2的摩尔浓度来影响水凝胶中细胞的分化或生长速率。 此外,水凝胶系统可用于持续递送治疗性蛋白质,例如用于治疗肝癌,纤维化或肝炎。

    METHOD FOR CREATING INTRACELLULAR ARTIFICIAL NANOSTRUCTURES IN SITU
    2.
    发明申请
    METHOD FOR CREATING INTRACELLULAR ARTIFICIAL NANOSTRUCTURES IN SITU 失效
    方法创建人造纤维人造纳米结构

    公开(公告)号:US20100093084A1

    公开(公告)日:2010-04-15

    申请号:US12194554

    申请日:2008-08-20

    IPC分类号: C12N5/00 C12N1/00

    CPC分类号: C12N9/18 B82Y5/00 C12N9/16

    摘要: A method of creating intracellular artificial nanostructures in situ, which employees a chemical precursor. The precursor does not self-assemble due to the presence of a cleavable motif linked to it. When the precursor comes inside live cells by an uptaking mechanism on the cell membrane, the cleavable motif is then to be removed by an enzymatic action of a first enzyme. Without the cleavable motif, the precursor now engages in a self-assembling process to form nanostructures within the live cells, which may cause formation of a hydrogel. Furthermore, the self-assembling process can be made reversible by employing a second enzyme which puts the cleavable motif back to the precursor, whereby dissolving the nanostructures into solution.

    摘要翻译: 一种原位生成细胞内人造纳米结构的方法,其雇用了化学前体。 由于存在与其连接的可裂解基序,前体不会自组装。 当前体通过细胞膜上的吸收机制进入活细胞时,然后通过第一酶的酶促作用除去可切割基序。 现在,前体不具有自组装过程,以在活细胞内形成纳米结构,这可能导致形成水凝胶。 此外,通过使用将可切割基序重新回到前体的第二种酶,可以使自组装过程可逆,从而将纳米结构溶解到溶液中。

    Multifunctional supramolecular hydrogels as biomaterials
    3.
    发明申请
    Multifunctional supramolecular hydrogels as biomaterials 审中-公开
    多功能超分子水凝胶作为生物材料

    公开(公告)号:US20070243255A1

    公开(公告)日:2007-10-18

    申请号:US11237498

    申请日:2005-09-27

    摘要: The present invention pertains to the design and application of a supramolecular hydrogel having a three-dimensional, self-assembling, elastic, network structure comprising non-polymeric, functional molecules and a liquid medium, whereby the functional molecules are noncovalently crosslinked. The functional molecules may be, for instance, anti-inflammatory molecules, antibiotics, metal chelators, anticancer agents, small peptides, surface-modified nanoparticles, or a combination thereof. The design of the hydrogel includes: 1) modifying functional molecules to convert them into hydrogelators while enhancing or maintaining their therapeutic properties and 2) triggering the hydrogelation process by physical, chemical, or enzymatic processes, thereby resulting in the creation of a supramolecular hydrogel via formation of non-covalent crosslinks by the functional molecules. Applications of the present invention include use of the supramolecular hydrogel, for instance, as a biomaterial for wound healing, tissue engineering, drug delivery, and drug/inhibitor screening.

    摘要翻译: 本发明涉及具有包含非聚合功能分子和液体介质的三维,自组装,弹性网状结构的超分子水凝胶的设计和应用,由此功能分子是非共价交联的。 功能性分子可以是例如抗炎分子,抗生素,金属螯合剂,抗癌剂,小肽,表面改性的纳米颗粒或其组合。 水凝胶的设计包括:1)修饰功能性分子,将其转化为水凝胶,同时增强或维持其治疗性能; 2)通过物理,化学或酶法触发水凝胶化过程,从而产生超分子水凝胶 通过功能分子形成非共价交联。 本发明的应用包括使用超分子水凝胶,例如作为伤口愈合,组织工程,药物递送和药物/抑制剂筛选的生物材料。

    Formation of hydrogel in the presence of peroxidase and low concentration of hydrogen peroxide
    4.
    发明授权
    Formation of hydrogel in the presence of peroxidase and low concentration of hydrogen peroxide 有权
    在过氧化物酶和低浓度过氧化氢存在下形成水凝胶

    公开(公告)号:US08691206B2

    公开(公告)日:2014-04-08

    申请号:US13336783

    申请日:2011-12-23

    摘要: In a process of forming a hydrogel from a mixture comprising hydrogen peroxide (H2O2), horseradish peroxidase (HRP), and a polymer comprising a crosslinkable phenol group, the gelation rate in the solution and the crosslinking density in the hydrogel can be independently adjusted or controlled by selection of the molarity of H2O2 and concentration of HRP in the solution when the molarity of H2O2 is limited to be within a range and the concentration of HRP is limited to be above a threshold. A method for determining the range and threshold is disclosed. The hydrogel may be used to grow cells, in which case, the molarity of H2O2 may be selected to affect the differentiation or growth rate of the cells in the hydrogel. Also, the hydrogel system may be used for sustained delivery of a therapeutic protein, for example in the treatment of liver cancer, fibrosis or hepatitis.

    摘要翻译: 在由包含过氧化氢(H 2 O 2),辣根过氧化物酶(HRP)和包含可交联酚基的聚合物的混合物形成水凝胶的方法中,可以独立地调节溶液中的凝胶化速率和水凝胶中的交联密度, 当H 2 O 2的摩尔浓度被限制在一个范围内并且HRP的浓度被限制在高于阈值时,通过选择H 2 O 2的摩尔浓度和HRP浓度来控制。 公开了一种用于确定范围和阈值的方法。 水凝胶可用于生长细胞,在这种情况下,可以选择H2O2的摩尔浓度来影响水凝胶中细胞的分化或生长速率。 此外,水凝胶系统可用于持续递送治疗性蛋白质,例如用于治疗肝癌,纤维化或肝炎。

    Therapeutic Uses of Artificial Nanostructures
    5.
    发明申请
    Therapeutic Uses of Artificial Nanostructures 审中-公开
    人造纳米结构的治疗用途

    公开(公告)号:US20080193968A1

    公开(公告)日:2008-08-14

    申请号:US12063079

    申请日:2006-03-06

    IPC分类号: C12P1/00

    CPC分类号: B82Y30/00

    摘要: The present invention provides a method for controlling the fate of mammalian cells or microorganisms by the enzymatic formation of intracellular nanostructures. Enzymatic reactions trigger the intracellular self-assembly to convert a proper precursor into another molecule or nanoobject that will aggregate inside cells or inside or between tissues or organs. Further, this invention provides a method for making artificial nanostructures inside or between tissues or organs, by injecting a proper designed precursor into tissues or organs, and enzymatic reaction converting the precursor to a hydrogelator to form artificial nanostructures and inducing hydrogelation and at the state of a disease, another enzyme converts the hydrogelator back to precursor to induce gel-to-sol transition to release a drug. The present invention can be applied to treat diseases caused by the malfunction of cells, infection caused by microorganisms and provides a novel route for controlled drug releases, formation of new therapeutic agents, and in-situ formation of hydrogel to treat degenerative diseases such as osteoarthritis.

    摘要翻译: 本发明提供了通过酶促形成细胞内纳米结构来控制哺乳动物细胞或微生物的命运的方法。 酶促反应引发细胞内自组装,将合适的前体转化成另外的分子或纳米对象,其将聚集在细胞内或组织内或组织或器官之间。 此外,本发明提供了通过将适当设计的前体注入组织或器官中,在组织或器官内或组织或器官之间制备人造纳米结构的方法,以及将前体转化为水凝胶体以形成人造纳米结构并诱导水凝胶化的酶反应 一种疾病,另一种酶将水凝胶反应器转化为前体,以诱导凝胶 - 溶质转变以释放药物。 本发明可以应用于治疗由细胞发生故障,由微生物引起的感染引起的疾病,为控制药物释放,新治疗剂的形成和原位形成水凝胶治疗退行性疾病如骨关节炎提供了新途径 。

    Method for creating intracellular artificial nanostructures in situ
    6.
    发明授权
    Method for creating intracellular artificial nanostructures in situ 失效
    原位生成细胞内人造纳米结构的方法

    公开(公告)号:US08338151B2

    公开(公告)日:2012-12-25

    申请号:US12194554

    申请日:2008-08-20

    IPC分类号: C12N1/04 C12N9/00

    CPC分类号: C12N9/18 B82Y5/00 C12N9/16

    摘要: A method of creating intracellular artificial nanostructures in situ, which employees a chemical precursor. The precursor does not self-assemble due to the presence of a cleavable motif linked to it. When the precursor comes inside live cells by an uptaking mechanism on the cell membrane, the cleavable motif is then to be removed by an enzymatic action of a first enzyme. Without the cleavable motif, the precursor now engages in a self-assembling process to form nanostructures within the live cells, which may cause formation of a hydrogel. Furthermore, the self-assembling process can be made reversible by employing a second enzyme which puts the cleavable motif back to the precursor, whereby dissolving the nanostructures into solution.

    摘要翻译: 一种原位生成细胞内人造纳米结构的方法,其雇用了化学前体。 由于存在与其连接的可裂解基序,前体不会自组装。 当前体通过细胞膜上的吸收机制进入活细胞时,然后通过第一酶的酶促作用除去可切割基序。 现在,前体不具有自组装过程,以在活细胞内形成纳米结构,这可能导致形成水凝胶。 此外,通过使用将可切割基序重新回到前体的第二种酶,可以使自组装过程可逆,从而将纳米结构溶解到溶液中。

    Method for detecting the mutant genes of the major gene cacna1h relating to the childhood absence epilepsy and the cacna1h mutant genes
    7.
    发明申请
    Method for detecting the mutant genes of the major gene cacna1h relating to the childhood absence epilepsy and the cacna1h mutant genes 审中-公开
    检测与儿童期无癫痫和cacna1h突变基因有关的主要基因cacna1h突变基因的方法

    公开(公告)号:US20060210981A1

    公开(公告)日:2006-09-21

    申请号:US10543503

    申请日:2003-01-27

    IPC分类号: C12Q1/68 C12P19/34

    CPC分类号: C12Q1/6883 C12Q2600/156

    摘要: The present invention relates to a method of detecting the CACNA1H mutant gene of childhood absence epilepsy-the main function gene, the said method is directly sequencing or restriction analysis. The present invention relates to CACNA1H mutant gene. The present invention further relates to the use of the said detection and mutant gene. The present invention connects the CACNA1H gene with medicine for treating childhood absence epilepsy, proving new target site for medicine for treating the same. The present invention establishes the foundation for developing new medicines for treating childhood absence epilepsy and other type of idiopathic system epilepsy as well as other system diseases associated with CACNA1H gene.

    摘要翻译: 本发明涉及检测儿童无症状癫痫的主要功能基因CACNA1H突变基因的方法,所述方法为直接测序或限制性分析。 本发明涉及CACNA1H突变基因。 本发明还涉及所述检测和突变基因的用途。 本发明将CACNA1H基因与用于治疗儿童期不存在癫痫的药物连接,证明了用于治疗儿童的药物的新靶点。 本发明为开发用于治疗儿童期癫痫和其他类型特发性系统癫痫以及与CACNA1H基因相关的其他系统疾病的新药物奠定基础。