摘要:
Provided is a display device having a viewing angle changing function, which is capable of preventing leakage of information displayed on a display screen even when there is a fault generated in changing the viewing angle. The image display device including a viewing angle changing element capable of changing a wide vision display and a narrow vision display and including a display element is provided with a detection element which detects a fault generated in the viewing angle changing element and a module for changing to a narrow vision display when there is a fault based on a detection value of the detection element. For example, when there is a fault, a transparent heater is operated to heat a liquid crystal layer to set a transparent-scattering changing element to a transparent state and forcibly set the display device to a narrow vision display.
摘要:
A liquid crystal display accommodates a reflective portion with a concavo-convex reflecting pixel electrode for reflecting incident light from the display face side, and a transmissive portion with a transmissive pixel electrode for transmitting light output from the backlight. In a wide viewing angle region, luminance of the reflective portion is greater than the transmissive portion. In other angle regions, luminance of the transmissive portion is greater than the reflective portion. In a wide viewing field mode, the reflective portion and transmissive portion both perform normal display. In the narrow viewing field mode, the transmissive portion performs normal display, while the reflective portion performs cancelling data display, thereby rendering unviewable the display content of the transmissive portion from beyond a certain viewing angle. Thus, a semi-transmissive liquid crystal display device and a portable terminal device is switchable between a narrow viewing field mode and a wide viewing field mode.
摘要:
A liquid crystal display element includes a liquid crystal composition sandwiched between substrates, wherein at least two types of liquid crystal compositions which exhibit liquid crystal phase in different temperature ranges are contained within each one pixel, and each of the at least two types of liquid crystal compositions is sealed and isolated within each pixel.
摘要:
A microlouver includes a periodic structure in which a transparent layer and a light absorption layer are alternately disposed with a constant, repetitive period. The range of the exit direction of a light beam passing through the transparent layer is restricted by the light absorption layer. The periodic structure includes a periodic structure portion divided in the direction that intersects the direction in which the transparent layer and the light absorption layer are repeatedly disposed. In the periodic structure portion, between the periodic structures adjacent to each other, there is a difference of 180 degree in the phase of spatial frequency of each periodic structure.
摘要:
A beam direction control element has transparent areas and light absorption areas alternately arranged on a surface of a substrate, wherein the light absorption areas function as a louver for controlling the direction of a beam of light. The beam direction control element is manufactured by disposing an optically transparent material on a first transparent substrate to form transparent ridges which constitute the transparent areas, filling curable and photo-absorptive fluid in gaps between the transparent ridges, and then curing the fluid to form the light absorption areas.
摘要:
A liquid crystal display element includes a liquid crystal composition sandwiched between substrates, wherein at least two types of liquid crystal compositions which exhibit liquid crystal phase in different temperature ranges are contained within each one pixel, and each of the at least two types of liquid crystal compositions is sealed and isolated within each pixel.
摘要:
In a formation method for forming a fine structure in a workpiece (30) containing an etching control component, using an isotropic etching process, a mask (32, 34) having an opening (36) is applied to the workpiece, and the workpiece is etched with an etching solution (38) to thereby form a recess (40), corresponding to a shape of the opening, in a surface of the workpiece. The etching of the workpiece is stopped due to the etching control component eluted out of the workpiece in the etching solution within the recess during the isotropic etching process.
摘要:
A liquid crystal display panel has a drive substrate and an opposing substrate disposed parallel to each other by way of a seal member provided with a liquid crystal injection inlet. A liquid crystal layer is sealed between the two substrates. Apertures are provided in the portion formed on the periphery of the pixel area of the smoothed film that is formed on the surface of the drive substrate, and an orientation film is formed so that at least part of the peripheral edge portion is positioned inside the apertures. Thereby, the liquid crystal injection time can be reduced and the panel can be set in a narrow frame, and the wiring and peripheral drive circuits are not liable to be damaged.
摘要:
A planar light source includes a large variable width of an irradiation angle of illumination light, a display device having a large variable width of an angle of field that uses the planar light source, a portable terminal device that uses the display device, and a ray direction switching element that is incorporated in the planar light source. A beam direction regulating element (a louver), which controls a direction of light, and a transparent and scattering switching element, which can switch the transparent state and the scattering state according to ON and OFF of an applied voltage, are provided between a backlight and a liquid crystal panel, whereby it is possible to increase a variable width of an irradiation angle of light in the planar light source and increase a variable width of an angle of field of the liquid crystal display device that uses the planar light source.
摘要:
In a light source device, a row of fibers is provided in which a plurality of optical fibers is arrayed in a single row in parallel fashion separately from each other. A light-direction controller is disposed on one side of the optical fibers, main fibers is disposed above and below the light-direction controller, and a main fiber is disposed at the other end of the row of fibers. Light sources are connected to each of the end portions of the main fibers. Three types of mirrors that mutually differ in direction are formed on the surface of the light-direction controller, light emitted from a main fiber enters the optical fibers by way of a first mirror, and light emitted from a main fiber enters the optical fibers by way of a second mirror.