Abstract:
An absorbent manufacturing device forms an absorbent by depositing a liquid absorbent fiber and a super absorbent polymer in a deposition part. The absorbent manufacturing device includes: a plurality of suction holes that are provided in the deposition part, wherein the liquid absorbent fiber and the super absorbent polymer flowing inside a scattering duct are deposited in the deposition part by suction; a suction duct that is provided in communication with the suction holes and draws air so that the suction holes perform suction; and a separator that separates a super absorbent polymer of size equal to or larger than a certain size from a flow of air flowing in the suction duct and returns the separated super absorbent polymer to the scattering duct.
Abstract:
An absorbent manufacturing device forms an absorbent by depositing a liquid absorbent fiber and a super absorbent polymer in a deposition part. The absorbent manufacturing device includes: a plurality of suction holes that are provided in the deposition part, wherein the liquid absorbent fiber and the super absorbent polymer flowing inside a scattering duct are deposited in the deposition part by suction; a suction duct that is provided in communication with the suction holes and draws air so that the suction holes perform suction; and a separator that separates a super absorbent polymer of size equal to or larger than a certain size from a flow of air flowing in the suction duct and returns the separated super absorbent polymer to the scattering duct.
Abstract:
A fixing device includes: a frame forming a transport path; a heating member disposed on the transport path; first and second transport rollers which are disposed so as to face the heating member in the transport direction and hold the recording sheet between the first and second transport rollers to transport the recording sheet, the first transport roller including a rotation shaft; and a spring which includes a holding portion holding the rotation shaft of the first transport roller, a support portion supported by the frame and an arm part between the holding portion and the support portion, and is configured to bias the transport roller to the second transport roller; and a restriction portion which contacts a part of the spring between the holding portion and the support portion and restricts the first transport roller from being moved in a direction separated from the second transport roller.
Abstract:
A camera-shake correction apparatus includes an image capturing unit configured to capture an object image, a camera-shake detection unit configured to detect a camera-shake applied to the camera-shake correction apparatus, a correction unit configured to correct the camera-shake of the object image by moving a correction member based on a camera-shake signal detected by the camera-shake detection unit, and a control unit configured to measure an amplitude of the camera-shake or a frequency of the camera-shake, or both the amplitude of the camera-shake and the frequency of the camera-shake, based on the camera-shake signal supplied from the camera-shake detection unit, and the control unit further configured to control to hold the correction member at a latest position if it is determined that the measured amplitude is smaller than a predetermined amplitude or if it is determined that the measured frequency is lower than a predetermined frequency, or if it is determined that the measured amplitude is smaller than the predetermined amplitude and the measured frequency is lower than the predetermined frequency.
Abstract:
An image forming apparatus includes: a fixing device having a heating member, a heat source, a rotating member, and a temperature sensor; and a control device configured to control the heat source, wherein, in a case of a low temperature state where the temperature of the heating member is lower than a predetermined temperature, the control device to control the heat source such that the temperature of the heating member rises with a gradient equal to or greater than a predetermined value, and wherein, in a case of a high temperature state where the temperature of the heating member at the print-instruction receiving time is equal to or higher than the predetermined temperature, the control device to control the heat source such that the temperature of the heating member rises with a gradient smaller than that in the normal mode.
Abstract:
A method of producing a carbon fiber composite material includes a first step and a second step. The first step includes oxidizing first carbon nanofibers produced by a vapor growth method to obtain second carbon nanofibers having an oxidized surface. The second step includes mixing the second carbon nanofibers into an elastomer, and uniformly dispersing the carbon nanofibers in the elastomer by applying a shear force to obtain the carbon fiber composite material. The second carbon nanofibers obtained by the first step have a surface oxygen concentration measured by X-ray photoelectron spectroscopy (XPS) of 2.6 to 4.6 atm %.
Abstract:
According to the embodiments, an ultraviolet irradiation apparatus includes: a cylindrical water passage body through which treatment target water passes, and which has paired openings in its respective two end portions; at least one ultraviolet irradiation member provided inside the water passage body on a plane orthogonal to a direction from one to the other of the openings, and configured to emit ultraviolet rays to the treatment target water passing through the water passage body; and paired flange joints projecting from peripheral edges of the paired openings of the water passage body outward of the openings, respectively.
Abstract:
An ultraviolet water treating apparatus according to one embodiment has an ultraviolet irradiation unit, and water inlet and outlet pipes. The unit includes a hollow enclosure with first and second openings in its peripheral wall. Within the enclosure, one or more ultraviolet irradiation devices are provided, which irradiate ultraviolet light onto the water flowing through the enclosure. Also within the enclosure, a cleaning device is provided, which includes a cleaning tool to clean the surface of each protective sleeve, and a driving unit to move the cleaning tool along the protective sleeve. The inlet pipe is in fluid communication with the first opening and flows the water therethrough into the enclosure. The outlet pipe is in fluid communication with the second opening and flows the ultraviolet-irradiated water therethrough out of the enclosure. The inlet and outlet pipes have their central axes intersected with the central axis of the enclosure.
Abstract:
A processing apparatus that performs processing on a workpiece continuous in a transport direction, and performs processing on the workpiece at a predetermined processing pitch in a rotational direction of a rotating body that rotates about an axis, includes: a first processing section that is disposed at a predetermined position in the rotational direction so as to oppose an outer circumferential face of the rotating body, second processing sections at each predetermined angle in the rotational direction on the outer circumferential face of the rotating body, which perform the processing on the workpiece in cooperation with the first processing section when a second processing section opposes the first processing section, and a support section that supports the workpiece between the second processing sections, and in which it is possible to change, depending on the processing pitch, a position at which the support section supports the workpiece.
Abstract:
A capper head for general purpose usable even when the specifications of a cap including thread pitches are changed without using a fixed gear and a lifting cam determining a lifting stroke and the timing thereof. The rotational output of a servo motor (2) is transmitted to a screw mechanism (4) through a sliding engagement section (3), and a screw shaft (17) is lowered while rotating for capping. The lowering stroke of the screw shaft (17) is allowed by the sliding engagement section (3). In capping, even if the strokes of a rotating chuck (7) and an output shaft (31) are different from the lowering stroke by the screw mechanism (4), a stroke difference absorption section (5) absorbs the stroke difference therebetween since a spring (23) in combination with a spline transmitting the rotation is deflected in the axial direction.