Abstract:
A method for testing a printed circuit board to determining the dielectric loss associated with the circuit board material relative to a standard. Dielectric losses in the material generate heat when a high frequency electronic signal, such as a microwave frequency signal, is communicated through a microstrip that is embedded within the printed circuit board. The temperature or spectrum at the surface of printed circuit board is measured and compared against the temperature or spectrum of the standard to determine whether the material under test is acceptable. While various temperature measurement devices may be used, the temperature is preferably measured without contacting the surface, such as using an infrared radiation probe.
Abstract:
A method of electrically qualifying high speed printed circuit board (PCB) connectors includes mounting a PCB connector on a test card, sending bit patterns through a first portion of the test card, evaluating a waveform on a sense signal on a second portion of the test card for the bit patterns launched on said first portion of the test card to measure common mode noise, and comparing the measured common mode noise of the second portion of the test card to a golden standard performed on a pre-qualified connector. The first portion of the test card comprises connectors to inject bit patterns. The second portion of the test card includes a split plane which induces common mode noise on a sense signal, the sense signal, and a termination pack. If the measured common mode noise on the PCB connector is worse than the golden standard, then the PCB connector is disqualified. If the measured common mode noise on the PCB connector is as good as or better than the golden standard, then the PCB connector is qualified. A first section of the PCB connector connects to the first portion of the test card and a second section of the PCB connector connects to the second portion of the test card. Transmission lines in the test card and the sense line are tightly coupled by shortening a distance between the sense line and the transmission lines.
Abstract:
A method for testing a printed circuit board to determining the dielectric loss associated with the circuit board material relative to a standard. Dielectric losses in the material generate heat when a high frequency electronic signal, such as a microwave frequency signal, is communicated through a microstrip that is embedded within the printed circuit board. The temperature or spectrum at the surface of printed circuit board is measured and compared against the temperature or spectrum of the standard to determine whether the material under test is acceptable. While various temperature measurement devices may be used, the temperature is preferably measured without contacting the surface, such as using an infrared radiation probe.