Abstract:
Provided is a nickel (Ni)-copper (Cu) plated high-carbon steel wire for springs. The Ni—Cu plated high-carbon steel wire includes a core wire that includes a high-carbon steel wire; and a Ni-plating layer and a Cu player which are sequentially plated on a surface of the core wire and then are drawn.
Abstract:
A plated steel wire, according to one aspect of the present invention, comprises: a base steel wire; and a zinc alloy plated layer. The zinc alloy plated layer comprises, in percentage by weight: 1.0% to 3.0% of AI; 1.0% to 2.0% of Mg; 0.5% to 5.0% of Fe; and the balance being Zn and unavoidable impurities, and includes a Zn/MgZn2/AI ternary eutectic structure, a Zn single-phase structure, and an Fe—Zn-AI-based crystal structure, wherein the Fe—Zn-AI-based crystal structure is formed adjacent to the base steel wire, and can have an average thickness of ⅕ to ½ with respect to an average thickness of the zinc alloy plated layer.
Abstract:
The present disclosure relates to KINIZ alloys having a homogeneous microstructure. A KINIZ alloy includes: copper (Cu) and iron (Fe) in a total amount of 75 wt % to 95 wt %; and nickel (Ni) in an amount of 1 wt % to 20 wt %, zirconium (Zr) in an amount of 0.1 wt % to 5.0 wt %, and a balance of inevitable impurities. A KINIZ alloy includes: copper (Cu) and iron (Fe) in a total amount of 75 wt % to 95 wt %; and manganese (Mn) in an amount of 2.0 wt % to 5.0 wt %, zirconium (Zr) in an amount of 0.3 wt % to 1.0 wt %, and a balance (excluding 0%) of inevitable impurities.
Abstract:
A plated steel wire, according to one aspect of the present invention, comprises: a base steel wire; and a zinc alloy plated layer. The zinc alloy plated layer comprises, in percentage by weight: 1.0% to 3.0% of AI; 1.0% to 2.0% of Mg; 0.5% to 5.0% of Fe; and the balance being Zn and unavoidable impurities, and includes a Zn/MgZn2/AI ternary eutectic structure, a Zn single-phase structure, and an Fe—Zn-AI-based crystal structure, wherein the Fe—Zn-AI-based crystal structure is formed adjacent to the base steel wire, and can have an average thickness of ⅕ to ½ with respect to an average thickness of the zinc alloy plated layer.
Abstract:
A plated steel wire, according to one aspect of the present invention, comprises: a base steel wire; and a zinc alloy plated layer. The zinc alloy plated layer comprises, in percentage by weight: 1.0% to 3.0% of Al; 1.0% to 2.0% of Mg; 0.5% to 5.0% of Fe; and the balance being Zn and unavoidable impurities, and includes a Zn/MgZn2/Al ternary eutectic structure, a Zn single-phase structure, and an Fe—Zn—Al-based crystal structure, wherein the Fe—Zn—Al-based crystal structure is formed adjacent to the base steel wire, and can have an average thickness of ⅕ to ½ with respect to an average thickness of the zinc alloy plated layer.
Abstract:
The present invention relates to a rope for an elevator. The rope for the elevator comprises: a center strand formed by twisting a plurality of wires; inner layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the center strand; and outer layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the inner layer strands, wherein ten of each of the inner layer strands and the outer layer strands are prepared, the diameter of the center strand, the diameter of the inner layer strand and the diameter of the outer layer strand are respectively 0.33-0.35 times, 0.13-0.15 times and 0.22-0.24 times as large as the diameter of a first imaginary circle circumscribed around the outer layer strands, and a fill factor is 64-67%.
Abstract:
The present invention relates to a rope for an elevator. The rope for the elevator comprises: a center strand formed by twisting a plurality of wires; inner layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the center strand; and outer layer strands formed by twisting the plurality of wires and arranged along the outer periphery of the inner layer strands, wherein ten of each of the inner layer strands and the outer layer strands are prepared, the diameter of the center strand, the diameter of the inner layer strand and the diameter of the outer layer strand are respectively 0.33-0.35 times, 0.13-0.15 times and 0.22-0.24 times as large as the diameter of a first imaginary circle circumscribed around the outer layer strands, and a fill factor is 64-67%.