Abstract:
A tubular pressure accumulator which is used, in particular, as a fuel distribution rail for a mixture-compressing, spark-ignited internal combustion engine includes a tubularly bent metal wall. In this way, longitudinal sides, which are assigned to one another, of tubularly bent metal wall are connected to one another through a weld. Furthermore, the tubularly bent metal wall has at least one design feature implemented by the machining of the flat metal wall and the bending of metal wall, which take place prior to the welding.
Abstract:
The present invention refers to a seal ring for a mechanical seal, comprising a base body (2), a first layer (3) applied to a first face side (2a) of a base body (2), and a second layer (4) applied to a second face side (2b) of the base body (2), wherein at least one of the layers (3) is configured as a slide surface of the seal ring. Furthermore, the present invention refers to a method for producing such a seal ring.
Abstract:
In order to provide a seal arrangement for sealing between a first medium space filled with a first medium and a second medium space filled with a second medium which ensures reliable sealing between the medium spaces with very low leakage values even over a prolonged period of use, wherein said seal arrangement comprises a moveable component which is displaceable in the longitudinal direction thereof and/or rotatable about the longitudinal direction thereof and extends through the seal arrangement and wherein the seal arrangement comprises a sealing element which comprises a first sealing region that is sealing in relation to the first medium space and a second sealing region that is sealing in relation to the second medium space, wherein the first sealing region comprises a first dynamic sealing section abutting against the moveable component and the second sealing region comprises a second dynamic sealing section abutting against the moveable component and at least one of the two dynamic sealing sections has at least two sealing lips, it is proposed that each of the two sealing regions should comprise at least one respective spring element which biases the dynamic sealing section of the respective sealing region against the moveable component.
Abstract:
A mechanical face seal is provided that surrounds a shaft that is to be sealed, the mechanical face seal includes a stationary seal ring wherein the shaft is integral to the mechanical face seal, is configured in one piece, makes a transition to the stationary seal ring and includes the same material as the ring.
Abstract:
In order to provide a seal arrangement for sealing between a first medium space filled with a first medium and a second medium space filled with a second medium which ensures reliable sealing between the medium spaces with very low leakage values even over a prolonged period of use, wherein said seal arrangement comprises a moveable component which is displaceable in the longitudinal direction thereof and/or rotatable about the longitudinal direction thereof and extends through the seal arrangement and wherein the seal arrangement comprises a sealing element which comprises a first sealing region that is sealing in relation to the first medium space and a second sealing region that is sealing in relation to the second medium space, wherein the first sealing region comprises a first dynamic sealing section abutting against the moveable component and the second sealing region comprises a second dynamic sealing section abutting against the moveable component and at least one of the two dynamic sealing sections has at least two sealing lips, it is proposed that each of the two sealing regions should comprise at least one respective spring element which biases the dynamic sealing section of the respective sealing region against the moveable component.
Abstract:
The invention relates to a modular automated tool dispenser comprising at least one tool delivery module with at least one tool compartment containing a plurality of tools that are combined to form tool classes and with a plurality of tool conveying devices, each device being associated with one of the tool classes and conveying tools of one class to a tool delivery point. Each tool class is defined by the tool type, tool size and/or the tool weight as a tool parameter. The dispenser also comprises a tool selection device for selecting the desired tool class and the number of tools to be delivered and for activating the tool conveying device that is associated with the selected tool class.
Abstract:
A secondary sealing element comprises a base body (12) made of a synthetic material and comprising a base portion (13) and a seal portion (14) which each comprise coaxially aligned, axially adjacent through bores (17, 31) for the passage of a component, and an annular disc element (25) accommodated in the base portion and comprising a through bore (30) coaxially aligned with the through bores in the base and seal portions and being made of a material which differs from that of the base body. In the unloaded state, the through bore (30) of the annular disc element (25) has a radial dimension d which is greater than that D2 of the through bore (31) in the seal portion (14) and smaller than that D1 in the base portion (13) of the base body (12). The annular disc element consists of a carbon material. An important field of application for the secondary sealing element is that of mechanical face seals for sealing relatively moveable components.
Abstract:
A tubular pressure accumulator which is used, in particular, as a fuel distribution rail for a mixture-compressing, spark-ignited internal combustion engine includes a tubularly bent metal wall. In this way, longitudinal sides, which are assigned to one another, of tubularly bent metal wall are connected to one another through a weld. Furthermore, the tubularly bent metal wall has at least one design feature implemented by the machining of the flat metal wall and the bending of metal wall, which take place prior to the welding.
Abstract:
A slide ring seal arrangement comprises a rotationally fixed slide ring (4) and a slide ring (11), which is provided for rotating together with a rotating component, these slide rings each being held in a loose seat and interacting, in, in essence, radially oriented sealing surfaces, which are prestressed with a main prestressing force while in contact with one another. Each slide ring, on its front face that faces away from the sealing surface, is axially supported on a supporting part (14, 17) via an annular bearing surface (16, 20) provided between the respective supporting part and the adjacent front face of the respective slide ring. A load ratio (d12−dH2)/(d12−d22) of =2.0, preferably between 0.8 and 2.0, preferably no greater than between 1.0 and 1.5, more preferably approximately 1.3 is maintained on the bearing surface (16, 20). The measurement (d1−d2) of each bearing surface (16, 20) is equal to =10 mm, preferably between 0.2 and 2.0, preferably no more than approximately 0.6 mm.
Abstract:
A device for continuous measurement of the forces acting upon a movable compressible playable object is provided with at least one transmitter communicating with at least one receiver outside the movable object. The at least one receiver transforms signals received and evaluates them online. The movable compressible playable object, for instance a ball, includes at least one pressure sensor and/or at least one three-dimensional acceleration sensor as well as a converter for transforming signals therefrom to transmit them to the transmitter. A method for the use of this device causes activation of the transmitter in the movable object so that a system is created for the measurement of the forces acting upon such an object wherein the received measuring signals are present in evaluated form, online or offline, to be analyzed. By means of the activation method, the active sensor system is initiated to receive and transmit measuring signals.