摘要:
An enhanced liquid crystal display design is provided having relatively fast response time particularly useful in high speed or highly intense applications, such as stereoscopic or autostereoscopic image display. The liquid crystal display device is configured to display stereoscopic images, and comprises an LCD panel and control electronics configured to drive the LCD panel to a desired 10 stereoscopic display state. The control electronics are configured to employ transient phase switching and overdrive the LCD panel to a desired state to enable relatively rapid display of stereoscopic images.
摘要:
An enhanced liquid crystal display design is provided having relatively fast response time particularly useful in high speed or highly intense applications, such as stereoscopic or autostereoscopic image display. The liquid crystal display device is configured to display stereoscopic images, and comprises an LCD panel and control electronics configured to drive the LCD panel to a desired 10 stereoscopic display state. The control electronics are configured to employ transient phase switching and overdrive the LCD panel to a desired state to enable relatively rapid display of stereoscopic images.
摘要:
An enhanced liquid crystal display design is provided having relatively fast response time particularly useful in high speed or highly intense applications, such as stereoscopic or autostereoscopic image display. The liquid crystal display device is configured to display stereoscopic images, and comprises an LCD panel and control electronics configured to drive the LCD panel to a desired stereoscopic display state. The control electronics are configured to employ transient phase switching and overdrive the LCD panel to a desired state to enable relatively rapid display of stereoscopic images.
摘要:
A laser based vascular illumination system utilizing a FPGA for detecting vascular positions, processing an image of such vasculature positions, and projecting the image thereof onto the body of a patient.
摘要:
A laser based vascular illumination system utilizing a FPGA for detecting vascular positions, processing an image of such vasculature positions, and projecting the image thereof onto the body of a patient.