Abstract:
In some embodiments, an apparatus includes providing a representation of a set of digital medical images to a first machine learning model to define a feature vector associated with a presence of an intracranial hemorrhage. A representation of the set of digital medical images is provided to a second machine learning model to define a second feature vector associated with a volume of the intracranial hemorrhage. Using a third machine learning model, a set of EMRs associated with risk factors for a predefined indication is analyzed to define a third feature vector. The first, second and third feature vectors are provided as inputs to a fourth machine learning model to determine a metric associated with an applicability of a specific treatment associated with a predefined indication. An alert is sent to relevant healthcare providers and relevant tests, procedures or bloodwork are ordered for the predefined indication.
Abstract:
A vaccine composition for prophylaxis and treatment of Chikungunya virus infections is disclosed which is capable of conferring immunity against any genotypic variants of the Chikungunya virus. More particularly the invention discloses particular nucleotide sequences and their translated proteins thereof, which may be expressed as Virus Like Particles which for use as a vaccine antigens against Chikungunya virus infections. The compositions disclosed in this invention are also protective against any genotypic variants of the Chikungunya virus which may be propagated by any suitable vector of the disease including Aedis albopictus and Aedis aegypti.
Abstract:
A method for playing a local ringback tone is disclosed. A second party device is called from a calling party device. An alert message indicating that the calling party device is to play a network ringback tone is received. It is determined whether to play a pre-stored local ringback tone instead of the network ringback tone. The local ringback tone or the network ringback tone is played based on the determination. At any time before call connection or call release, the local ringback tone and the network ringback tone are switched between based on user input.
Abstract:
The present invention relates to vaccine formulation capable of eliciting protective immune response against Chikun-gunya virus infection in humans and other mammalian hosts. The immunogenic formulation comprises purified inactivated Chikun-gunya virus in a stable formulation. Methods of propagation and purification of the virus are discussed. The inactivated virus formulation is non-infectious, immunogenic and elicits protective immune response in mammalian host. The immunogenic composition is formulated for in vivo administration to humans. The invention also discusses the strategy of developing a subunit vaccine using the recombinant viral proteins as antigens for immunization. The recombinant virus antigens that are potentially immunogenic can be used in diagnosing for the presence of the virus.
Abstract:
The invention provides a method of determining the prognosis of cancer in a subject. The method comprises (a) obtaining a sample from the subject, (b) analyzing the sample for the expression level of a carboxypeptidase E (CPE) splice variant, and (c) correlating the expression level in the sample with the prognosis of cancer in the subject. The invention further provides a method of diagnosing cancer, methods of treatment, kits for detecting mRNA expression of a CPE-ΔN, and inhibitors of CPE-ΔN and compositions thereof.
Abstract:
The present invention relates to novel polymorphic forms of N-[2-(diethylamino)ethyl]-5-[(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidene)methyl-2,4-dimethyl-1H-pyrrole-3-carboxamide-Sunitinib base (I). The present invention also relates to methods of preparing such polymorphic crystals.
Abstract:
A monitoring system provided according to an aspect of the present invention enables a user to specify multiple resource elements as a resource pool, and view various aggregate information (e.g., sum, average) for attributes of interest for all the resource elements together. Such a feature is particularly useful in distributed environments where multiple independent resource elements need to be viewed as a single resource pool. The user is provided the flexibility to select the specific resource elements to be included in the resource pool.
Abstract:
A method of elliptic curve encryption includes, (a) selecting an elliptic curve Ep (a,b) of the form y2=x3+ax+b mod (p) wherein a and b are non-negative integers less than p satisfying the formula 4 a3+27b2 mod (p) not equal to 0; (b) generating a large 160 bit random number by a method of concatenation of a number of smaller random numbers; (c) generating a well hidden point G (x,y) on the elliptic curve Ep (a,b) by scalar multiplication of a point B (x,y) on the elliptic curve with a large random integer which further includes the steps: (i) converting the large random integer into a series of powers of 231; (ii) converting each coefficient of 231 obtained from above step into a binary series; (iii) multiplication of binary series obtained from steps (i) and (ii) above with the point B (x,y) on the elliptic curve; (d) generating a private key nA (of about >=160 bit length); (e) generating a public key PA (x,y) given by the formula PA (x,y)=(nA−G (x,y)) mod (p); (f) encrypting the input message MSG; (g) decrypting the ciphered text.
Abstract:
The present invention describes method of preparation and use of polypeptide vaccine formulation for prevention and control of Staphylococci mediated infections in human, bovine and other mammals, using recombinant DNA technology.
Abstract:
A system for and method of electromagnetically detecting an embedded dielectric region within a target object are provided. The method includes the steps of: (i) selecting a target object including a plurality of discrete scattering mediums, wherein the plurality of discrete scattering mediums include the embedded dielectric region and an adjacent dielectric region, and wherein the plurality of discrete scattering mediums define at least one dielectric interface between the embedded dielectric region and the adjacent dielectric region; (ii) directing electromagnetic radiation at the target object, wherein the electromagnetic radiation is characterized by a diagnostic frequency that is varied incrementally over a diagnostic frequency band; (iii) detecting electromagnetic radiation reflected by the target object over the predetermined frequency band such that there are M measurements of a reflected electromagnetic signal at frequencies f.sub.1, f.sub.2, . . . , f.sub.N, where M represents a number of scattering mediums within the target object and where N represents a number of diagnostic frequencies within the diagnostic frequency band; (iv) constructing a correlation matrix representative of the reflected signal, wherein the correlation matrix comprises a number of signal eigenvectors and a number of noise eigenvectors; (v) decorrelating the correlation matrix by dividing the reflected signal according to frequency sub-bands within the diagnostic frequency band, wherein adjacent bands of the frequency sub-bands overlap, forming a series of iterated correlation matrices using signal eigenvectors and noise eigenvectors from each of the overlapping frequency sub-bands, forming a decorrelated matrix by averaging the iterated correlation matrices, wherein the decorrelated matrix comprises a finite group of signal eigenvectors and a finite group of noise eigenvectors; and (vi) constructing a scattering signature of the target object from the finite group of signal eigenvectors, wherein the scattering signature is indicative of the properties of the embedded dielectric region and the adjacent dielectric region.