Abstract:
A sound wave testing device is provided. The sound wave testing device comprises at least one sound output unit for providing at least one first sound signal, at least one sound-collecting element disposed above the at least one sound output unit, at least one sound-receiving unit disposed at one end of the at least one sound-collecting element, and an isolating element disposed between the at least one sound output unit and the at least one sound-collecting element, in which the solar panel is disposed on the isolating element. The at least one first sound signal is transformed into at least one second sound signal while passing through the solar panel. The at least one second sound signal is received and transmitted to at least one sound-receiving unit, and the at least one second sound signal is transformed into at least one digital signal for output.
Abstract:
A battery device including a case, an elastic component, a metal coil, a magnetic component, at least one energy storage component and a rectifier voltage regulator circuit is provided. The case includes a first and a second electrode ends, and both the elastic component and the metal coil are disposed in the case. The magnetic component is disposed in a receiving space of the coil and connects to an end of the elastic element, and the energy storage component connects to the first and the second electrode ends in parallel. When the battery device moves back and forth along a direction, the elastic component extends or retracts to drive the magnetic component to move back and forth relative to the metal coil along this direction. Thereby, an electric energy is induced in the metal coil, and is then stored in the energy storage component after being rectified and voltage-regulated.
Abstract:
An environmental test apparatus is disclosed. The environmental test apparatus is configured to simulate the environmental variation in temperature and humidity. The environmental test apparatus comprises a box, a plurality of openings, a plurality of fans, two guiding elements and a plurality of controllers. The box has a plurality of sidewalls and a plurality of corners each being defined by three of the adjacent sidewalls, wherein the openings are disposed on at least two sidewalls of the box, and each of the fans is correspondingly disposed in each of the openings. The two guiding elements are disposed on two opposite corners for guiding the airflow in the hollow box, wherein the two opposite corners share a single sidewall. The controllers are configured to control the rotational speed of each fan and adapted to uniform the distribution of the temperature and the humidity inside the box.
Abstract:
An impact testing device is provided. The impact testing device comprises a plate and an impact generating module. The plate has a first surface for loading a test object. The impact generating module is fastened to the plate to apply an impact to the plate and actuate the plate along the first direction, the second direction and the third direction independently. Thereby, the impact testing device of this invention is adapted to apply the impact to the test object along any direction under control.
Abstract:
A method of activating a battery is applied to an electronic device having a controller that keeps counting system time to acquire a system date. The method includes: (1) acquiring data of the battery, including states, an activation number and a last activation date; (2) performing an activation process and setting the battery in an activation state when determining, based on the data, that the battery is in an inactivation state, the activation number is smaller than a predetermined activation number, and an interval between the last activation date and the system date is greater than a predetermined activation interval; (3) discharging the battery, and charging the battery when determining that a battery power level is less than a predetermined power level; and (4) setting the battery in the inactivation state after the activation process is finished. Therefore, a curing problem of the battery is overcome.
Abstract:
A posture sensing alert apparatus is provided. The posture sensing alert apparatus comprises an attachment element, a detecting element, a processing element and an alert element. The attachment element is adapted to attach on a human body. The detecting element is disposed on the attachment element and is adapted to sense a posture change from the human body. The processing element is disposed on the attachment element and connects to the detecting element. The processing element is adapted to output a signal to the alert element in response to the posture change for a predetermined period so that the alert element is adapted to output an alert accordingly.
Abstract:
An electrodeless lamp driven by a microwave generator is disclosed. The electrodeless lamp includes a first infill composed of mercury-free metal halide and provides a continuous full spectrum radiation including ultraviolet ray, visible light, and infrared ray. Thereby, the electrodeless lamp, which meets the standard of AM 1.5 G, has advantages of environmental friendliness, high efficacy lighting, long service life, and low light decay, and therefore, have become applicable in the field of solar simulators.
Abstract:
A micro damper device comprising a main body, a cover, a sensor component and a control component is provided. The main body has a first surface, a second surface, a convex and a coil. A current is introduced to the coil to form a magnetic field with a first and a second magnetic pole. The cover has a first end, a second end and a first magnetic component. The sensor component is disposed on a side opposite the convex to measure a first vibration direction of the second surface. The control component is electrically connected between the sensor component and the coil and controls the current for adjusting the polarity and the strength of the first magnetic pole for producing a force between the first magnetic pole and a third magnetic pole, which makes the main body move along a second vibration direction opposite the first vibration direction.
Abstract:
An impact assembly including an impact platform and at least two impact generating devices is provided. The at least two impact generating devices are disposed adjacent to each other in pair and detachably mounted to the impact platform. Each of the at least two impact generating devices has a housing and an impact generating unit. The housing is adapted to form a compartment where the impact generating unit is disposed. The impact generating units of the at least two impact generating devices provide at least two impact forces to the impact platform according to the at least two corresponding timings.
Abstract:
An impact generator and an impact testing platform applying the impact generator are provided. The impact generator comprises a magnetic device, a coil, and an elastic device. The coil has a first receiving space for receiving the magnetic device, and the elastic device biases the magnetic device to an initial position. While a current is directed into the coil, a magnetic field is induced in the first receiving space to actuate the magnetic device to generate an impact to the ambience. While the current is blocked, the magnetic device returns to the initial position via the elastic device.