摘要:
The invention provides an amplification optical fiber, which can output light with a good beam quality even when a higher-order mode is excited, and an optical fiber amplifier using the amplification optical fiber.An amplification optical fiber 50 has a core 51 and a clad 52 covering the core 51. The core 51 propagates light with a predetermined wavelength in at least an LP01 mode, and an LP02 mode, and an LP03 mode. When the LP01 mode, the LP02 mode, and the LP03 mode are standardized by power, in at least a part of a region where the intensity of the LP01 mode is larger than at least one of the intensities of the LP02 mode and the LP03 mode, the active element is added to the core 51 at a higher concentration than the central portion of the core.
摘要:
The invention relates to nanostructure and its manufacturing method. In the manufacturing method of a nanostructure, first anisotropic crystalline particles, connectors having end to be connected to a specific crystal face of each of said crystalline particles, and second particles to be connected to the other end of each of said connectors are prepared. First ends of the connectors are connected to specific crystal faces of the first crystalline particles, and simultaneously or before or after the connection, the second ends of the connectors are connected to the second particles. A nanostructure formed by this method has a three-dimensional structure which does not have a closest packing structure.
摘要:
A rare earth-doped core optical fiber of the present invention includes a core comprising a silica glass containing at least aluminum and ytterbium, and a clad provided around the core and comprising a silica glass having a lower refraction index than that of the core, wherein the core has an aluminum concentration of 2% by mass or more, and ytterbium is doped into the core at such a concentration that the absorption band which appears around a wavelength of 976 nm in the absorption band by ytterbium contained in the core shows a peak absorption coefficient of 800 dB/m or less.
摘要:
A fiber output stabilizer according to an aspect of the invention stabilizes output light from a rare-earth doped optical fiber in which at least one kind of a rare-earth element is added to a core. The fiber output stabilizer includes: a monitoring light source that emits monitoring light having a wavelength shorter than that of excitation light exciting the rare-earth element; an optical multiplexer that multiplexes the monitoring light into the excitation light; an optical demultiplexer that demultiplexes the monitoring light passing through the rare-earth doped optical fiber; and a passing light detector that detects light intensity of the monitoring light from the optical demultiplexer.
摘要:
A rare earth-doped core optical fiber includes a core comprising a silica glass containing at least aluminum and ytterbium, a clad provided around the core and comprising a silica glass having a lower refraction index than that of the core, and a polymer layer provided on the outer circumference of the clad and having a lower refractive index than that of the clad, wherein aluminum and ytterbium are doped into the core such that a loss increase by photodarkening, TPD, satisfies the following inequality (A). By this rare earth-doped core optical fiber, it is possible to manufacture an optical fiber laser capable of maintaining a sufficient laser oscillation output even when used for a long period of time. TPD≧10{−0.655*(DAl)−4.304*exp{−0.00343*(AYb)}+1.274} (A)
摘要:
A dispersion compensating optical fiber for NZ-DSFs, includes: an uncovered dispersion compensating optical fiber; a double-layered resin coating disposed around the uncovered dispersion compensating optical fiber; and an outer coating layer having a thickness of 3 to 7 μm, containing silicone in an amount of 1 to 5% by weight, and disposed around the double-layered resin coating. The outer diameter of the uncovered dispersion compensating optical fiber is in a range from 90 to 125 μm, an outer diameter of the dispersion compensating optical fiber is in a range from 180 to 250 μm, and the amount of silicone contained in the outer coating layer is determined such that an adhesive property of the outer coating layer is 1 gf/mm or less.
摘要:
A photonic band gap fiber is provided having multiple air holes in a silica portion extending in the longitudinal direction of the fiber. The fiber includes a cladding containing an air hole periodic structure in an extended triangular lattice configuration, wherein first rows each having a number of air holes at a first pitch are arranged alternately in the cross section of the fiber with multiple second rows of air holes each with multiple air holes at a second pitch which is twice the first pitch. The fiber further includes an air hole core.
摘要:
A graded-index multimode fiber includes a core made of silica glass, the core having a central region and an outer peripheral region, and a cladding which is provided at an outer periphery of the core. The central region contains one of germanium and phosphorus, and the outer peripheral region contains fluorine.
摘要:
An optical fiber that includes a core containing a first concentration of germanium, an inner cladding arranged on the core, the inner cladding containing a second concentration of germanium and having a first diffusion coefficient, and an outer cladding arranged on the inner cladding, the outer cladding having a second diffusion coefficient, where the first diffusion coefficient is larger than the second diffusion coefficient, and where the first concentration of germanium is about 200% or more of the second concentration of germanium. An optical fiber constructed in this manner can be spliced with an optical fiber having a different MFD, such as a single-mode optical fiber or an erbium-doped optical fiber, with low splice loss and a sufficient splicing strength.
摘要:
An optical fiber has a first mode field diameter in a dominant mode of an acoustic mode generated in the optical fiber different from a second mode field diameter in a light intensity distribution of the optical fiber. Furthermore, a transmission system is configured to perform an analog signal transmission, a baseband transmission, or an optical SCM transmission by use of the optical fiber.