Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.
Abstract:
Methods and systems for an Automated Readiness Evaluation System (ARES), which is adapted for use with unmanned aircraft systems (UAS). The ARES (and UAS with such an ARES) is configured for a particular task or application selected by the user based upon their level of specific knowledge. The system may include: hardware components with communication protocols; a task, module data, and skill level repository; a user device; and an optional base system. Methods are provided for configuration, calibration, error checking, and operation of a UAS whereby the ARES serves as a mission planner by calculating the mission parameters for a user-selected task to minimize mission failure by determining the variables for task completion.
Abstract:
Methods and systems for an Automated Readiness Evaluation System (ARES), which is adapted for use with unmanned aircraft systems (UAS). The ARES (and UAS with such an ARES) is configured for a particular task or application selected by the user based upon their level of specific knowledge. The system may include: hardware components with communication protocols; a task, module data, and skill level repository; a user device; and an optional base system. Methods are provided for configuration, calibration, error checking, and operation of a UAS whereby the ARES serves as a mission planner by calculating the mission parameters for a user-selected task to minimize mission failure by determining the variables for task completion.
Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.
Abstract:
A system and method for markers with digitally encoded geographic coordinate information for use in an augmented reality (AR) system. The method provides accurate location information for registration of digital data and real world images within an AR system. The method includes automatically matching digital data within an AR system by utilizing a digitally encoded marker (DEM) containing world coordinate information system and mathematical offset of digital data and a viewing device. The method further includes encoding geographic coordinate information into markers (e.g., DEMs) and decoding the coordinate information into an AR system. Through use of the method and corresponding system, marker technology and the basis of geo-location technology can be combined into a geo-located marker, thereby solving the problem of providing accurate registration within an augmented reality.
Abstract:
A system and method for markers with digitally encoded geographic coordinate information for use in an augmented reality (AR) system. The method provides accurate location information for registration of digital data and real world images within an AR system. The method includes automatically matching digital data within an AR system by utilizing a digitally encoded marker (DEM) containing world coordinate information system and mathematical offset of digital data and a viewing device. The method further includes encoding geographic coordinate information into markers (e.g., DEMs) and decoding the coordinate information into an AR system. Through use of the method and corresponding system, marker technology and the basis of geo-location technology can be combined into a geo-located marker, thereby solving the problem of providing accurate registration within an augmented reality.
Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.
Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.