Abstract:
A method for mapping a target image to a reference image includes receiving a target image; receiving a reference image that overlaps the target image; preprocessing the target image, wherein the preprocessing includes: rejecting a target image with a shadow region above a shadow threshold while keeping a target image with a shadow region below a shadow threshold; providing an uncertainty in a location of the kept target image relative to the reference image; transforming the kept target image to an atlas projection to match the reference image; partitioning the transformed kept target image into a sub-region; and determining a matching statistic for each sub-region to determine a location for each sub-region relative to the reference image.
Abstract:
Systems and methods relating to assessing a navigation subsystem are provided. One method includes: acquiring a ground image associated with a nominal position; assigning one or more texture classes to each of a plurality of pixels of the ground image; partitioning the processed ground image into a plurality of ground image sub regions; retrieving a reference image from an atlas of reference images; generating a plurality of matching statistics comprising a matching statistic for each ground image sub region by comparing the ground image sub region to a portion of the reference image; calculating a calculated position of the ground image and an uncertainty associated with the calculated position based on the matching statistics; and determining critique data associated with the navigation subsystem based on a comparison of the calculated position of the ground image with at least one position determined by the navigation subsystem.
Abstract:
Systems and methods relating to assessing a navigation subsystem are provided. One method includes: acquiring a ground image associated with a nominal position; assigning one or more texture classes to each of a plurality of pixels of the ground image; partitioning the processed ground image into a plurality of ground image sub regions; retrieving a reference image from an atlas of reference images; generating a plurality of matching statistics comprising a matching statistic for each ground image sub region by comparing the ground image sub region to a portion of the reference image; calculating a calculated position of the ground image and an uncertainty associated with the calculated position based on the matching statistics; and determining critique data associated with the navigation subsystem based on a comparison of the calculated position of the ground image with at least one position determined by the navigation subsystem.
Abstract:
A process of measuring the radiant intensity profile of an effective source of a projection image system that has an effective source, an object plane, an imaging objective, an exit pupil, and an image plane. The improved process consists of selecting at least one field point and a corresponding aperture plane aperture and projecting a plurality of images of the selected field point through the corresponding selected aperture plane aperture at a plurality of various intensities of the effective source. By analyzing the recorded images of the effective source at various intensities it is possible to determine a radiant intensity profile of the image source at the selected field point.
Abstract:
A method of mapping a target region image to a referenced image includes steps of acquiring the target region image. The method also includes acquiring the referenced image overlapping the target region image. The method further includes determining a number of common subregions in an intersection of the referenced image and the target region image, determining offsets between the common subregions, computing a distortion map of the target region image over the intersection, and remapping the target region image to match the reference image. The method can be utilized in a Unmanned Aerial Vehicle (UAV) and the target image can be a SAR image.
Abstract:
A method for mapping a target image to a reference image includes receiving a target image; receiving a reference image that overlaps the target image; preprocessing the target image, wherein the preprocessing includes: rejecting a target image with a shadow region above a shadow threshold while keeping a target image with a shadow region below a shadow threshold; providing an uncertainty in a location of the kept target image relative to the reference image; transforming the kept target image to an atlas projection to match the reference image; partitioning the transformed kept target image into a sub-region; and determining a matching statistic for each sub-region to determine a location for each sub-region relative to the reference image.