摘要:
A method for making an integrated circuit including vertical junction field effect transistors is disclosed. One embodiment creates a vertical junction field effect transistor using a fault-tolerant or alignment-tolerant production process. The device performance is not harmed, even if misalignments in consecutive semiconductor processing steps occur.
摘要:
A transistor component having a shielding structure. One embodiment provides a source terminal, a drain terminal and control terminal. A source zone of a first conductivity type is connected to the source terminal. A drain zone of the first conductivity type is connected to the drain terminal. A drift zone is arranged between the source zone and the drain zone. A junction control structure is provided for controlling a junction zone in the drift zone between the drain zone and the source zone, at least including one control zone. A shielding structure is arranged in the drift zone between the junction control structure and the drain zone and at least includes a shielding zone of a second conductivity type being complementarily to the first conductivity type. The shielding zone is connected to a terminal for a shielding potential. The at least one control zone and the at least one shielding zone have different geometries or different orientations in a plain that is perpendicular to a current flow direction of the component.
摘要:
A method for making an integrated circuit including vertical junction field effect transistors is disclosed. One embodiment creates a vertical junction field effect transistor using a fault-tolerant or alignment-tolerant production process. The device performance is not harmed, even if misalignments in consecutive semiconductor processing steps occur.
摘要:
A transistor component having a shielding structure. One embodiment provides a source terminal, a drain terminal and control terminal. A source zone of a first conductivity type is connected to the source terminal. A drain zone of the first conductivity type is connected to the drain terminal. A drift zone is arranged between the source zone and the drain zone. A junction control structure is provided for controlling a junction zone in the drift zone between the drain zone and the source zone, at least including one control zone. A shielding structure is arranged in the drift zone between the junction control structure and the drain zone and at least includes a shielding zone of a second conductivity type being complementarily to the first conductivity type. The shielding zone is connected to a terminal for a shielding potential. The at least one control zone and the at least one shielding zone have different geometries or different orientations in a plain that is perpendicular to a current flow direction of the component.