Abstract:
The present invention provides systems, devices and related methods for applying electric fields for cancerous cell destruction and tissue ablation. A method can include advancing an ablation probe into a patient; deploying a guide from the delivery member along a guide tissue penetration path, deploying an electrode from the guide along an electrode tissue penetration path, and establishing current flow within the target tissue.
Abstract:
The present invention provides devices and systems, as well as methods, of electric field delivery and ablation (e.g., non-thermal ablation) of target tissues, including cancerous cells and solid tumors. A method of the present invention can include applying an alternating current to a target tissue and removing ablated or liquefied tissue from the target tissue region.
Abstract:
An electromagnetic device and method of operation thereof are disclosed. The electromagnetic device contains an electromagnetic field generator, a microcurrent generator and a photonic accumulator. The electromagnetic field generator generates broadband electromagnetic fields to substantially envelope a subject placed in proximity thereto. The subject is placed in contact with microcurrent electrodes so as to permit a broadband microcurrent to flow through the subject or along the surface of the subject. A photonic accumulator is positioned proximate the subject to receive biophotons emitted therefrom and to activate the biophotons with a light source.
Abstract:
Transurethral systems and methods for delivering electrical energy and controlled, mild heating to a prostate tissue of a patient for destruction of cancerous and/or hyperplastic tissue. A method includes positioning an elongate urethral probe having an expandable member with electrode elements at a target location in the patient's urethra, and inflating or expanding at the target location. Secondary electrodes are positioned within or adjacent to the prostate tissue and spaced from the electrode elements of the expandable member, and an alternating electrical current flow is established between the electrode elements of the expandable member and the one or more secondary electrodes. Current delivery can be selected so as to destroy or ablate cancerous cells of the prostate tissue.
Abstract:
An electromagnetic device and method of operation thereof are disclosed. The electromagnetic device contains an electromagnetic field generator, a microcurrent generator and a photonic accumulator. The electromagnetic field generator generates broadband electromagnetic fields to substantially envelope a subject placed in proximity thereto. The subject is placed in contact with microcurrent electrodes so as to permit a broadband microcurrent to flow through the subject or along the surface of the subject. A photonic accumulator is positioned proximate the subject to receive biophotons emitted therefrom and to activate the biophotons with a light source.
Abstract:
Methods and systems for delivering electrical energy for controlled heating or hyperthermia to a target tissue of a patient for destruction of cancerous cells or tissue.
Abstract:
The present invention provides systems, devices and related methods for applying electric fields for cancerous cell destruction and tissue ablation. A method can include advancing an ablation probe into a patient; deploying a guide from the delivery member along a guide tissue penetration path, deploying an electrode from the guide along an electrode tissue penetration path, and establishing current flow within the target tissue.
Abstract:
The present invention provides devices and systems, as well as methods, of electric field delivery and non-thermal or selective ablation of target tissue regions, including selective ablation of cancerous cells and solid tumors. A method of the present invention includes delivering an electric field to a tissue, including positioning an electrode within a target tissue region comprising cancerous cells, and applying an alternating electrical current to the target tissue so as to non-thermally ablate cancerous cells of the target tissue region around the electrodes.