Abstract:
Microfluidics packages and methods of use are described, comprising in one embodiment a substrate having a top surface and means to lower pressure on the top surface; a fluidics card having a bottom surface and means to allow fluids to traverse through the card; and a polymeric barrier film, the polymeric barrier film positioned between the top surface of the substrate and the bottom surface of the fluidics card.
Abstract:
A speech recognition system utilizes both split matrix and split vector quantizers as front ends to a second stage speech classifier such as hidden Markov models (HMMs) to, for example, efficiently utilize processing resources and improve speech recognition performance. Fuzzy split matrix quantization (FSMQ) exploits the "evolution" of the speech short-term spectral envelopes as well as frequency domain information, and fuzzy split vector quantization (FSVQ) primarily operates on frequency domain information. Time domain information may be substantially limited which may introduce error into the matrix quantization, and the FSVQ may provide error compensation. Additionally, acoustic noise influence may affect particular frequency domain subbands. This system also, for example, exploits the localized noise by efficiently allocating enhanced processing technology to target noise-affected input signal parameters and minimize noise influence. The enhanced processing technology includes a weighted LSP and signal energy related distance measure in training Linde-Buzo-Gray (LBG) algorithm and during recognition. Multiple codebooks may also be combined to form single respective codebooks for split matrix and split vector quantization to lower processing resources demand.
Abstract:
Microfluidics chips and methods of use are described, comprising a pair of wafers, at least one having a patterned surface, and two polymeric barrier films between the wafers conforming to the patterned surface. The polymeric barrier films allow the wafers of the inventive microfluidics chips to be reused without cleaning.
Abstract:
In one embodiment, a speech recognition system is organized with a fuzzy matrix quantizer with a single codebook representing u codewords. The single codebook is designed with entries from u codebooks which are designed with respective words at multiple signal to noise ratio levels. Such entries are, in one embodiment, centroids of clustered training data. The training data is, in one embodiment, derived from line spectral frequency pairs representing respective speech input signals at various signal to noise ratios. The single codebook trained in this manner provides a codebook for a robust front end speech processor, such as the fuzzy matrix quantizer, for training a speech classifier such as a u hidden Markov models and a speech post classifier such as a neural network. In one embodiment, a fuzzy Viterbi algorithm is used with the hidden Markov models to describe the speech input signal probabilistically.
Abstract:
A speech recognition system utilizes multiple quantizers to process frequency parameters and mean compensated frequency parameters derived from an input signal. The quantizers may be matrix and vector quantizer pairs, and such quantizer pairs may also function as front ends to a second stage speech classifiers such as hidden Markov models (HMMs) and/or utilizes neural network postprocessing to, for example, improve speech recognition performance. Mean compensating the frequency parameters can remove noise frequency components that remain approximately constant during the duration of the input signal. HMM initial state and state transition probabilities derived from common quantizer types and the same input signal may be consolidated to improve recognition system performance and efficiency. Matrix quantization exploits the “evolution” of the speech short-term spectral envelopes as well as frequency domain information, and vector quantization (VQ) primarily operates on frequency domain information. Time domain information may be substantially limited which may introduce error into the matrix quantization, and the VQ may provide error compensation. The matrix and vector quantizers may split spectral subbands to target selected frequencies for enhanced processing and may use fuzzy associations to develop fuzzy observation sequence data. A mixer may provide a variety of input data to the neural network for classification determination. Fuzzy operators may be utilized to reduce quantization error. Multiple codebooks may also be combined to form single respective codebooks for split matrix and split vector quantization to reduce processing resources demand.
Abstract:
Microfluidics chips and methods of use are described, comprising a pair of wafers, at least one having a patterned surface, and two polymeric barrier films between the wafers conforming to the patterned surface. The polymeric barrier films allow the wafers of the inventive microfluidics chips to be reused without cleaning.
Abstract:
Microfluidics packages and methods of use are described, comprising in one embodiment a substrate having a top surface and means to lower pressure on the top surface; a fluidics card having a bottom surface and means to allow fluids to traverse through the card; and a polymeric barrier film, the polymeric barrier film positioned between the top surface of the substrate and the bottom surface of the fluidics card.
Abstract:
A speech recognition system utilizes multiple quantizers to process frequency parameters and mean compensated frequency parameters derived from an input signal. The quantizers may be matrix and vector quantizer pairs, and such quantizer pairs may also function as front ends to a second stage speech classifiers such as hidden Markov models (HMMs) and/or utilizes neural network postprocessing to, for example, improve speech recognition performance. Mean compensating the frequency parameters can remove noise frequency components that remain approximately constant during the duration of the input signal. HMM initial state and state transition probabilities derived from common quantizer types and the same input signal may be consolidated to improve recognition system performance and efficiency. Matrix quantization exploits the “evolution” of the speech short-term spectral envelopes as well as frequency domain information, and vector quantization (VQ) primarily operates on frequency domain information. Time domain information may be substantially limited which may introduce error into the matrix quantization, and the VQ may provide error compensation. The matrix and vector quantizers may split spectral subbands to target selected frequencies for enhanced processing and may use fuzzy associations to develop fuzzy observation sequence data. A mixer may provide a variety of input data to the neural network for classification determination. Fuzzy operators may be utilized to reduce quantization error. Multiple codebooks may also be combined to form single respective codebooks for split matrix and split vector quantization to reduce processing resources demand.
Abstract:
Microfluidics chips and methods of use are described, comprising a pair of wafers, at least one having a patterned surface, and two polymeric barrier films between the wafers conforming to the patterned surface. The polymeric barrier films allow the wafers of the inventive microfluidics chips to be reused without cleaning.
Abstract:
A speech recognition system utilizes both matrix and vector quantizers as front ends to a second stage speech classifier such as hidden Markov models (HMMs) and utilizes neural network postprocessing to, for example, improve speech recognition performance. Matrix quantization exploits the “evolution” of the speech short-term spectral envelopes as well as frequency domain information, and vector quantization (VQ) primarily operates on frequency domain information. Time domain information may be substantially limited which may introduce error into the matrix quantization, and the VQ may provide error compensation. The matrix and vector quantizers may split spectral subbands to target selected frequencies for enhanced processing and may use fuzzy associations to develop fuzzy observation sequence data. A mixer provides a variety of input data to the neural network for classification determination. The neural network's ability to analyze the input data generally enhances recognition accuracy. Fuzzy operators may be utilized to reduce quantization error. Multiple codebooks may also be combined to form single respective codebooks for split matrix and split vector quantization to reduce processing resources demand.