摘要:
The present invention provides plant-derived agents to interfere with the nonstructural NS1 gene from the influenza A virus subtype H1N1. More particularly, the siRNAs that exhibit strong inhibitory activity towards NS1, which effectively suppress replication of the influenza virus in mammalian cells. The invention further provides methods for production of siRNAs for the suppression of a broad range of influenza viral subtypes with sequence homologies.
摘要:
The present invention provides the complete genomic sequence of a novel human coronavirus, coined as coronavirus-HKU1 (“CoV-HKU1”), isolated in Hong Kong from a patient who had a recent history of visit to Schenzhen, China. The virus belongs to the order Nidovirales of the family Coronaviridae, being a single-stranded RNA virus of positive polarity. The invention also provides the deduced amino acid sequences of the complete genome of the CoV-HKU1. The nucleotide sequences and deduced amino acid sequences of the CoV-HKU1 are useful in preventing, diagnosing and/or treating the infection by CoV-HKU1. Furthermore, the invention provides immunogenic and vaccine preparations using recombinant and chimeric forms as well as subunits of the CoV-HKU1 based on the nucleotide sequences and deduced amino acid sequences of the CoV-HKU1.
摘要:
The present invention relates to a diagnostic assay for the virus causing Severe Acute Respiratory Syndrome (SARS) in humans (“hSARS virus”). In particular, the invention relates to a real-time quantitative PCR assay for the detection of hSARS virus using reverse transcription and polymerase chain reaction. Specifically, the quantitative assay is a TaqMan® assay using the primers and probes constructed based on the genome of the hSARS virus. The invention further relates to a diagnostic kit that comprises nucleic acid molecules for the detection of the hSARS virus.
摘要:
The present invention relates to a high-throughput diagnostic assay for the virus causing Severe Acute Respiratory Syndrome (SARS) in humans (“hSARS virus”). In particular, the invention relates to a high-throughput reverse transcription-PCR diagnostic test for SARS associated coronavirus (SARS-CoV). The present assay is a rapid, reliable assay which can be used for diagnosis and monitoring the spread of SARS and is based on the nucleotide sequences of the N (nucleocapsid)-gene of the hSARS virus. The present method eliminates false negative results and provides increased sensitivity for the assay. The invention also discloses the S (spike)-gene of the hSARS virus. The invention further relates to the deduced amino acid sequences of the N-gene and S-gene products of the hSARS virus and to the use of the N-gene and S-gene products in diagnostic methods. The invention further encompasses diagnostic assays and kits comprising antibodies generated against the N-gene or S-gene product.