Abstract:
An electrolytic bath for manufacturing acid water capable of securing sufficient conductivity even in pure water or deionized water without separately using a catalyst or an ion exchange resin, electrolyzing the pure water or deionized water as well as tap water, and particularly minimizing a reaction between ions and a gas through a deaeration effect and an electrolytic effect in one electrolytic process, increasing conductivity of acid water, and enhancing reduction potential and maintenance time of dissolving power, to obtain acid water (hydrogen water) as stable acid reduced water.
Abstract:
An electrolytic bath for manufacturing acidic water capable of ensuring sufficient conductivity through wide surfaces of electrodes and stability of the surfaces of the electrodes to electrolyze tap water as well as RO water or DI water, especially, by coupling electrodes having the same polarity as one to apply a power source to the electrodes having the same polarity at the same time without using an additional catalytic agent or ion exchange resin, and use of the acidic water are provided. In particular, an electrolytic bath for manufacturing acidic water capable of obtaining a high concentration of acidic water by further forming mesh electrodes having a polarity different from the plurality of electrodes on a surface of an ion exchange membrane to widen an area of the electrodes and minimize a distance between the electrodes, thereby further facilitating a redox reaction, and use of the acidic water are provided.
Abstract:
The present invention relates to hydrogencarbonate water and a cleaning method using the hydrogencarbonate water. Provided are hydrogencarbonate water obtained by dissolving carbon dioxide in hydrogen water having a dissolved hydrogen concentration of 0.1 ppm to 2.0 ppm; and a cleaning method comprising cleaning a substrate by immersing the substrate in the hydrogencarbonate water, or spraying the hydrogencarbonate water to the substrate.
Abstract:
An electrolytic bath for manufacturing acid water capable of securing sufficient conductivity even in pure water or deionized water without separately using a catalyst or an ion exchange resin, electrolyzing the pure water or deionized water as well as tap water, and particularly minimizing a reaction between ions and a gas through a deaeration effect and an electrolytic effect in one electrolytic process, increasing conductivity of acid water, and enhancing reduction potential and maintenance time of dissolving power, to obtain acid water (hydrogen water) as stable acid reduced water.