摘要:
Exemplary embodiments are directed to a current mirror and method of operation thereof. A method may include biasing a first transistor with a voltage at a gate of a second transistor to cause the first transistor to conduct, wherein the first transistor has a source operably coupled to a drain of a third transistor and a drain operably coupled to a gate of the third transistor. The method may also include providing an input current at the drain of the third transistor. Moreover, the method may include decreasing or increasing a voltage at the gate of the first transistor when a voltage at the gate of the second transistor and the drain of the first transistor respectively decreases or increases. Furthermore, the method may include generating an output current in a drain of a fourth transistor having a gate operably coupled to the gate of the third transistor.
摘要:
An apparatus for implementing phase rotation at baseband frequency for transmit diversity may include a primary transmit signal path and a diversity transmit signal path. Both the primary transmit signal path and the diversity transmit signal path may receive a primary transmit signal. A signal selector within the diversity transmit signal path may perform phase rotation with respect to the primary transmit signal while the primary transmit signal is at a baseband frequency, thereby producing a diversity transmit signal.
摘要:
An amplifier is disclosed that includes configurable feedback based on the output of a received signal strength indicator. The feedback may be increased for high received signal levels, and decreased for low received signal levels. In an embodiment, the configurable impedance may comprise a plurality of discrete impedance settings. Amplitude and/or time hysteresis may be incorporated.
摘要:
An amplifier is disclosed that includes configurable feedback based on the output of a received signal strength indicator. The feedback may be increased for high received signal levels, and decreased for low received signal levels. In an embodiment, the configurable impedance may comprise a plurality of discrete impedance settings. Amplitude and/or time hysteresis may be incorporated.
摘要:
Techniques for using a narrow filter located before a power amplifier to reduce interference in an adjacent frequency band are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes the narrow filter and the power amplifier. The narrow filter is for a first frequency band (e.g., Band 40) and has a first bandwidth that is more narrow than the first frequency band. The narrow filter receives and filters an input radio frequency (RF) signal and provides a filtered RF signal. The power amplifier receives and amplifies the filtered RF signal and provides an amplified RF signal. The apparatus may further include a full filter for the first frequency band and located after the power amplifier. The full filter receives and filters the amplified RF signal and provides an output RF signal when it is selected for use.
摘要:
In an exemplary embodiment, the communication device including an analog filter, where a digital signal processor sets the gain of the analog filter and the pole location of the filter simultaneously in order to maintain the filter pole location at a desired value or within a desired range. In further exemplary embodiments, the methodology to simultaneously set the gain and the pole location of the filters.
摘要:
In an exemplary embodiment, the communication device including an analog filter, where a digital signal processor sets the gain of the analog filter and the pole location of the filter simultaneously in order to maintain the filter pole location at a desired value or within a desired range. In further exemplary embodiments, the methodology to simultaneously set the gain and the pole location of the filters.
摘要:
Techniques for using a narrow filter located before a power amplifier to reduce interference in an adjacent frequency band are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes the narrow filter and the power amplifier. The narrow filter is for a first frequency band (e.g., Band 40) and has a first bandwidth that is more narrow than the first frequency band. The narrow filter receives and filters an input radio frequency (RF) signal and provides a filtered RF signal. The power amplifier receives and amplifies the filtered RF signal and provides an amplified RF signal. The apparatus may further include a full filter for the first frequency band and located after the power amplifier. The full filter receives and filters the amplified RF signal and provides an output RF signal when it is selected for use.
摘要:
Techniques for providing an efficient interface between a mixer block and a transconductance (Gm) block. In an exemplary embodiment, the output currents of at least two unit cells of the transconductance block are conductively coupled together, and coupled to the mixer block using a single conductive path. For a differential signal, the conductive path may include two conductive leads. Within the mixer block, the single conductive path may be fanned out to at least two unit cells of the mixer block. At least one Gm unit cell may be selectively enabled or disabled to control the gain setting of the mixer-transconductance block. The techniques may further be applied to transceiver architectures supporting in-phase and quadrature mixing, as well as multi-mode and/or multi-band operation.
摘要:
An apparatus for implementing phase rotation at baseband frequency for transmit diversity may include a primary transmit signal path and a diversity transmit signal path. Both the primary transmit signal path and the diversity transmit signal path may receive a primary transmit signal. A signal selector within the diversity transmit signal path may perform phase rotation with respect to the primary transmit signal while the primary transmit signal is at a baseband frequency, thereby producing a diversity transmit signal.