摘要:
A temperature elevating apparatus of a secondary battery includes a ripple generator and a controller. Ripple generator is connected to secondary battery, and is configured to actively generate ripple current of a predetermined frequency in secondary battery. Controller controls ripple generator to elevate a temperature of the secondary battery by generating ripple current in secondary battery. Here, the predetermined frequency is set to be a frequency in a frequency region where an absolute value of an impedance of secondary battery relatively decreases based on frequency characteristics of the impedance of secondary battery.
摘要:
Methods for making hydrogen storage tanks may include disposing a substantially solid block of hydrogen-absorbing alloy within an activation vessel. Hydrogen gas may then be introduced into the activation vessel under conditions that will cause the hydrogen-absorbing alloy to absorb hydrogen and crack or break apart. Preferably, a substantially powdered hydrogen-absorbing alloy is formed thereby. Thereafter, the substantially powdered hydrogen-absorbing alloy can be transferred from the activation vessel to a hydrogen storage tank without substantially exposing the powered hydrogen-absorbing alloy to oxygen. The hydrogen-absorbing alloy is preferably ingot-shaped when introduced into the activation vessel. Further, the substantially powdered hydrogen-absorbing alloy is preferably produced by continuously breaking the ingot-shaped hydrogen-absorbing alloy within the activation vessel due to volume expansion caused by the hydrogen-absorbing alloy having absorbed hydrogen. The hydrogen gas preferably contacts the hydrogen-absorbing alloy under relatively high-pressure and low temperature conditions.
摘要:
A temperature elevating apparatus of a secondary battery (10) includes a ripple generator (20) and a controller (30). Ripple generator (20) is connected to secondary battery (10), and is configured to actively generate ripple current (I) of a predetermined frequency in secondary battery (10). Controller (30) controls ripple generator (20) to elevate a temperature of the secondary battery by generating ripple current (I) in secondary battery (10). Here, the predetermined frequency is set to be a frequency in a frequency region where an absolute value of an impedance of secondary battery (10) relatively decreases based on frequency characteristics of the impedance of secondary battery (10).
摘要:
In a power output apparatus of the invention, a battery 36 is constructed by a lithium ion battery satisfying a first requirement of Sb/Pm2max>0.09 (m2/kW) as a relation of a total electrode area Sb of the battery to a rated output (maximum output) Pm2max of a motor MG2 in power operation and a second requirement of Sb/(|Pm1min+Pm2min|)>0.04 (m2/kW) as a relation of the total electrode area Sb of the battery to a rated output Pm1min of a motor MG1 in regenerative operation and a rated output Pm2min of the motor in regenerative operation. The lithium ion battery satisfying the first requirement and the second requirement ensures sufficient exertion of the drive characteristics of the motor MG2 and the power generation characteristics of both the motors MG1 and MG2.
摘要:
In a power output apparatus of the invention, a battery 36 is constructed by a lithium ion battery satisfying a first requirement of Sb/Pm2max>0.09 (m2/kW) as a relation of a total electrode area Sb of the battery to a rated output (maximum output) Pm2max of a motor MG2 in power operation and a second requirement of Sb/(|Pm1min+Pm2min|)>0.04 (m2/kW) as a relation of the total electrode area Sb of the battery to a rated output Pm1min of a motor MG1 in regenerative operation and a rated output Pm2min of the motor in regenerative operation. The lithium ion battery satisfying the first requirement and the second requirement ensures sufficient exertion of the drive characteristics of the motor MG2 and the power generation characteristics of both the motors MG1 and MG2.