摘要:
This invention relates to a measurement tool, and in particular to a measurement tool for use in determining the density and/or viscosity of a stationary or moving fluid. The measurement tool has been designed for use in borehole applications during the location and exploitation of oil and gas reserves. The measurement tool has a resilient pipe with a substantially uniform cross-section along its length, and the fluid is located within the pipe. The pipe carries an exciter which is connected to a signal generator, the exciter and signal generator being adapted to impart transverse and/or rotational oscillations to the pipe. Measuring the frequency of the oscillations can be used to determine the density and/or the viscosity of the fluid within the pipe.
摘要:
This invention relates to a measurement tool and method of use, and in particular to a measurement tool for use in determining a parameter of a stationary or moving fluid. The measurement tool has been designed primarily for use in borehole formation testing. The measurement tool can measure the dielectric constant of a fluid within a pipe or surrounding the tool. The pipe or wall between the tool and the fluid is electrically insulating. The tool has pair of capacitor plates mounted adjacent to the pipe or wall, a signal generator which can deliver an alternating electrical signal to at least one of the capacitor plates, and a detector for measuring a signal dependent upon the electrical capacitance between the capacitor plates. The measurement tool can additionally measure the electrical resistivity of the fluid.
摘要:
Methods, apparatus and products for separating oil and mud filtrate down hole and production of each to the surface via separate tubing, that includes custom engineered drill pipe for which two types of openings called ports have been cut or drilled: production ports and isolation ports. The production port produces formation fluid (normally hydrocarbons) from a perforation. In one non-limiting embodiment, a tube is welded to the inside of the casing at each production port to transmit the formation fluid to the top of the drill pipe section where it is attached to a custom engineered casing collar (described below) designed to allow flow to the next drill pipe section of the device. The isolation port produces mud filtrate from the adjacent borehole wall exterior to the casing, and these isolation ports are arranged in a pattern around each production port to keep mud filtrate in the invaded zone from reaching the production port. The number and placement of the production ports as well as the number, placement and shape of the isolation ports are determined using the information regarding the perforating design and other information such as the filtrate type and estimates of invasion depth as determined by well logs. Packers are set above and below the apparatus to provide an “isolation” chamber to contain the produced filtrate. Tubing through the upper packer will produce the filtrate to the surface via differential pressure or pumping. After the casing has been cemented, the perforating guns in the production ports are fired to begin production of formation fluid.
摘要:
Apparatus and methods for determining one or more fluid parameters of interest by irradiating fluid with a source of nuclear electromagnetic radiation and subsequently measuring attenuation and absorption properties of the fluid from which parameters of interest are determined. Measurements are made with a formation tester tool comprising preferably two functionally configured flow lines. The source simultaneously irradiates fluid contained in opposing irradiation sections that can be integral sections of each of the two flow lines. A radiation detector is dedicated to each irradiation section and measures radiation attenuation and absorption properties fluid contained within each flow line section. Absolute and relative fluid parameters of interest are determined from the responses of the two radiation detectors.
摘要:
A formation tester system with a tester tool comprising two or more functionally configured flow lines. The two or more functionally connected flow lines cooperating with one or more pumps and cooperating valves direct fluid to and from various axially disposed sections of the tester tool for analysis, sampling, and optionally ejection into the borehole or into the formation. The functionally connected flow lines extend contiguously through the sections of the tester tool. The functionally configured flow lines, cooperating with the one or more pumps and valves, can also direct fluid to and from various elements within a given tester tool section. Manipulation of fluid flows within the tester tool, as well as analysis, sampling and/or ejection operations, can be varied with the tester tool disposed in the borehole using appropriate commands from the surface of the earth.
摘要:
Methods, apparatus and products for separating oil and mud filtrate down hole and production of each to the surface via separate tubing, that includes custom engineered drill pipe for which two types of openings called ports have been cut or drilled: production ports and isolation ports. The production port produces formation fluid (normally hydrocarbons) from a perforation. In one non-limiting embodiment, a tube is welded to the inside of the casing at each production port to transmit the formation fluid to the top of the drill pipe section where it is attached to a custom engineered casing collar (described below) designed to allow flow to the next drill pipe section of the device. The isolation port produces mud filtrate from the adjacent borehole wall exterior to the casing, and these isolation ports are arranged in a pattern around each production port to keep mud filtrate in the invaded zone from reaching the production port. The number and placement of the production ports as well as the number, placement and shape of the isolation ports are determined using the information regarding the perforating design and other information such as the filtrate type and estimates of invasion depth as determined by well logs. Packers are set above and below the apparatus to provide an “isolation” chamber to contain the produced filtrate. Tubing through the upper packer will produce the filtrate to the surface via differential pressure or pumping. After the casing has been cemented, the perforating guns in the production ports are fired to begin production of formation fluid.
摘要:
This invention relates to a measurement tool and method of use, and in particular to a measurement tool for use in determining a parameter of a stationary or moving fluid. The measurement tool has been designed primarily for use in borehole formation testing. The measurement tool can measure the dielectric constant of a fluid within a pipe or surrounding the tool. The pipe or wall between the tool and the fluid is electrically insulating. The tool has pair of capacitor plates mounted adjacent to the pipe or wall, a signal generator which can deliver an alternating electrical signal to at least one of the capacitor plates, and a detector for measuring a signal dependent upon the electrical capacitance between the capacitor plates. The measurement tool can additionally measure the electrical resistivity of the fluid.
摘要:
A formation tester system with a tester tool comprising two or more functionally configured flow lines. The two or more functionally connected flow lines cooperating with one or more pumps and cooperating valves direct fluid to and from various axially disposed sections of the tester tool for analysis, sampling, and optionally ejection into the borehole or into the formation. The functionally connected flow lines extend contiguously through the sections of the tester tool. The functionally configured flow lines, cooperating with the one or more pumps and valves, can also direct fluid to and from various elements within a given tester tool section. Manipulation of fluid flows within the tester tool, as well as analysis, sampling and/or ejection operations, can be varied with the tester tool disposed in the borehole using appropriate commands from the surface of the earth.
摘要:
A system for measuring pressure in a well borehole using two pressure sensing gauges that are exposed to an area of common pressure. Pressure measurements are made with preferably two pressure gauge assemblies each containing a single pressure sensing gauge. The two pressure gauge assemblies are removably disposed within a receptacle or “pocket” in the outer surface of a wall of a formation tester tool section. When disposed or “side loaded” in the pocket, the gauges within the pair of assemblies are axially aligned and positioned in a plane that is normal to the radius of the formation tester tool section. Both pressure sensing gauges can be connected to respond to the same fluid pressure originating from a probe or port section of a formation tester tool. By disposing the pressure gauge assemblies in a receptacle or “pocket” in the outer surface or wall of a formation tester tool section, the pressure sensing gauges are exposed to wellbore fluids. Pressure sensing gauges are selected to have low mass. The low mass of the gauges and a cooperating heater assembly allow the pressure gauges to rapidly thermally stabilize with changing temperatures in the wellbore.
摘要:
A system for measuring pressure in a well borehole using two pressure sensing gauges that are exposed to an area of common pressure. Pressure measurements are made with preferably two pressure gauge assemblies each containing a single pressure sensing gauge. The two pressure gauge assemblies are removably disposed within a receptacle or “pocket” in the outer surface of a wall of a formation tester tool section. When disposed or “side loaded” in the pocket, the gauges within the pair of assemblies are axially aligned and positioned in a plane that is normal to the radius of the formation tester tool section. Both pressure sensing gauges can be connected to respond to the same fluid pressure originating from a probe or port section of a formation tester tool. By disposing the pressure gauge assemblies in a receptacle or “pocket” in the outer surface or wall of a formation tester tool section, the pressure sensing gauges are exposed to wellbore fluids. Pressure sensing gauges are selected to have low mass. The low mass of the gauges and a cooperating heater assembly allow the pressure gauges to rapidly thermally stabilize with changing temperatures in the wellbore.