摘要:
The invention provides methods and systems for predicting or evaluating protein-ligand coupling specificities. A pattern recognition model can be trained by selected sequence segments of training proteins which have a specified ligand coupling specificity. Each selected sequence segment is believed to include amino acid residue(s) that may contribute to the ligand coupling specificity of the corresponding training protein. Sequence segments in a protein of interest can be similarly selected and used to query the trained model to determine if the protein of interest has the same ligand coupling specificity as the training proteins. In one embodiment, the pattern recognition model employed is a hidden Markov model which is trained by concatenated cytosolic domains of GPCRs which have interaction preference to a specified class of G proteins. This trained model can be used to evaluate G protein coupling specificity of orphan GPCRs.
摘要:
This invention relates to mutant G protein-coupled receptors with improved G-protein coupling and receptor response, yeast cells expressing such receptors, vectors useful for making such cells, and methods of making and using same.
摘要:
The present invention particularly relates to a newly identified murine genomic polynucleotide that encodes an ortholog of the human P2T receptor which is expressed at high levels in the central nervous system, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. The invention relates also to identifying compounds which may be agonists, antagonists and/or inhibitors of P2T, and therefore potentially useful in therapy.
摘要:
This invention relates generally to a new family of potassium channels. More particularly, the present invention relates to the cloning and characterization of a family of distinct trans-membrane potassium ion channels, characterization of such channels, newly identified polynucleotide sequences, polypeptides encoded by such sequences, expression vectors capable of heterologous expression of such polynucleotide sequences, transformed host cells containing the expression vectors, and assay methods and kits therefor for determining the expression of heterologous nucleotide sequences encoding all or a portion of said potassium channels in host cells, chromosome mapping, diagnostic methodologies and kits therefore. Genes encoding potassium channels representative of this family were cloned from Drosophila melanogaster, Caenorhabditis elegans, human and mouse ESTs, and human brain, heart and kidney cDNA libraries. More particularly, the invention arises in part from the determination that the DNA sequences of these genes encode a structurally distinct potassium channel whose molecular architecture is characterized by four membrane spanning domains and two putative pore forming domains.
摘要:
The present invention particularly relates to a newly identified murine genomic polynucleotide that encodes an ortholog of the human P2T receptor which is expressed at high levels in the central nervous system, the use of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides. The invention relates also to identifying compounds which may be agonists, antagonists and/or inhibitors of P2T, and therefore potentially useful in therapy.
摘要:
This invention relates generally to a new family of potassium channels, whose molecular architecture is characterized by four membrane spanning domains and two putative pore forming domains. More particularly, the present invention relates to the cloning and characterization of mutants of this family of distinct trans-membrane potassium ion channels which confer improved inward potassium flux under acidic conditions, characterization of such channels, newly identified polynucleotide sequences, polypeptides encoded by such sequences, expression vectors capable of heterologous expression of such polynucleotide sequences, transformed host cells containing the expression vectors, and assay methods and kits therefor for determining the expression of heterologous nucleotide sequences encoding all or a portion of said potassium channels in host cells, chromosome mapping, diagnostic methodologies and kits therefore.