Abstract:
In accordance with an example embodiment of the present invention, an apparatus comprising a first body comprising a first power source, and a second body comprising a second power source and a display, the second body is configured to move relative to the first body between a closed configuration and an open configuration via at least one intermediate configuration, and when the apparatus is in at least one of the open and closed configurations the first power source is configured to power the display, and when the apparatus is in the at least one intermediate configuration the second power source is configured to power the display.
Abstract:
In accordance with an example embodiment of the present invention, an apparatus is provided, including a plurality of photon sensing layers arranged on top of each other, and an intermediate layer between each two adjacent sensing layers, the sensing layers being of graphene, and each intermediate layer being configured to prevent a respective color component of light from proceeding into the photon sensing layer next to it.
Abstract:
An apparatus comprises a rigid-flex circuit board and an electrolyte, the rigid-flex circuit board comprising first and second rigid regions physically and electrically connected to one another by a flexible region, the flexible region comprising first and second sections each comprising an electrically conductive layer and a capacitive element, wherein the apparatus is configured such that a chamber is defined between the first and second sections with the respective capacitive elements contained therein and facing one another, the chamber comprising the electrolyte, and wherein the apparatus is configured to store electrical charge when a potential difference is applied between the respective capacitive elements.
Abstract:
An apparatus comprises a rigid-flex circuit board and an electrolyte, the rigid-flex circuit board comprising first and second rigid regions physically and electrically connected to one another by a flexible region, the flexible region comprising first and second sections each comprising an electrically conductive layer and a capacitive element, wherein the apparatus is configured such that a chamber is defined between the first and second sections with the respective capacitive elements contained therein and facing one another, the chamber comprising the electrolyte, and wherein the apparatus is configured to store electrical charge when a potential difference is applied between the respective capacitive elements.
Abstract:
An apparatus and method of providing an apparatus, the apparatus including a loudspeaker configured to convert an electrical input signal into an acoustic output signal; and carbon nanohorn material wherein the carbon nanohorn material is positioned so as to be exposed to the acoustic output signal.
Abstract:
An apparatus and method of providing an apparatus, the apparatus including: a loudspeaker configured to convert an electrical input signal into an acoustic output signal; and carbon nanohorn material wherein the carbon nanohorn material is positioned so as to be exposed to the acoustic output signal.
Abstract:
An apparatus comprising first and second circuit boards, and an antenna for transmitting and/or receiving electromagnetic signals, the first and second circuit boards each comprising an electrically conductive layer, and a capacitive element configured to be charged and discharged, the apparatus configured such that a chamber is defined between the first and second circuit boards with the capacitive elements contained therein and facing one another, the chamber containing an electrolyte, wherein the electrically conductive layer of the first circuit board is configured to serve as a reference ground for the antenna, and wherein discharge of the capacitive elements is configured to provide a flow of current to an amplifier configured to drive the antenna.
Abstract:
An electrode, the electrode including a conducting layer configured to act, in use, as a charge collector to provide an electrical path for generated and/or stored charge through the conducting layer; a barrier layer, the barrier layer configured to cover a portion of a surface of said conducting layer such that, when the electrode is in contact with an electrolyte, the electrolyte is prevented from substantially contacting and corroding the conducting layer at the covered portion; and an active electrode element configured for use in generation and/or storing charge, the active electrode element positioned in a non-covered portion in electrical contact with the conducting layer to prevent the electrolyte from substantially contacting and corroding the conducting layer in the non-covered portion and to also be exposed to said electrolyte to allow for the generation and/or storage of charge and provide the generated/stored charge to the conducting layer.
Abstract:
An apparatus, the apparatus including first and second circuit boards, and an electrolyte, the first and second circuit boards each including a capacitive element, wherein the apparatus is configured such that a chamber is defined between the first and second circuit boards with the capacitive elements contained therein and facing one another, the chamber including the electrolyte, and wherein the apparatus is configured to store electrical charge when a potential difference is applied between the capacitive elements.
Abstract:
In accordance with an example embodiment of the present invention, an apparatus is provided, including a photodetecting structure with one or more photon sensing layers of graphene; and an integrated graphene field effect transistor configured to function as a pre-amplifier for the photodetecting structure, where the graphene field effect transistor is vertically integrated to the photodetecting structure.