Abstract:
A locking mechanism for releasably fixing an externally splined power take-off shaft to an output shaft of off-highway equipment such as a tractor. The output shaft has a hollow, internally splined hub portion adapted to axially receive the externally splined power take-off shaft to prevent relative rotational movement between the power take-off and output shafts. The locking mechanism includes a locking member supported within a radial opening in the power-take off shaft so as to be radially movable between an outer locking position and an inner unlocking position. In the outer locking position, the locking member is engageable with a recess formed in the hub portion of the output shaft to prevent relative axial movement between the power take-off shaft and the output shaft. In the inner unlocking position, the locking member is disengaged from the recess in the output shaft to permit such relative axial movement. An elongated actuator is positioned within an inner bore of the power take-off shaft and has a cam surface thereon. The actuator is movable between a first position in which the actuator operably maintains the locking member in its locking position, and a second position which permits radial movement of said locking member to its unlocking position. Upon return of the actuator to the first position, the cam surface operably engages the locking member to move the locking member to its locked position.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle. The agricultural implement also includes a carrier frame pivotally coupled to the hitch assembly by a main pivot joint such that the main pivot joint resists substantially all lateral loads between the carrier frame and the hitch assembly. The agricultural implement further includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective knuckle pivot joint, and an actuator assembly configured to rotate each wheel assembly about the respective knuckle pivot joint while the agricultural implement is in both a working and transport position.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle, and a carrier frame pivotally coupled to the hitch assembly. The agricultural implement also includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective pivot joint. The agricultural implement further includes an actuator assembly configured to rotate each wheel assembly about the respective pivot joint in a first direction by applying a first torque, and to rotate each wheel assembly about the respective pivot joint in a second direction, opposite the first direction, by applying a second torque. A magnitude of the first torque and a magnitude of the second torque are substantially equal.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle. The agricultural implement also includes a carrier frame pivotally coupled to the hitch assembly by a main pivot joint such that the main pivot joint resists substantially all lateral loads between the carrier frame and the hitch assembly. The agricultural implement further includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective knuckle pivot joint, and an actuator assembly configured to rotate each wheel assembly about the respective knuckle pivot joint while the agricultural implement is in both a working and transport position.
Abstract:
A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.
Abstract:
An agricultural implement is provided that includes a hitch assembly configured to couple the agricultural implement to a tow vehicle, and a carrier frame pivotally coupled to the hitch assembly. The agricultural implement also includes a pair of wheel assemblies each rotatably coupled to the carrier frame by a respective pivot joint. The agricultural implement further includes an actuator assembly configured to rotate each wheel assembly about the respective pivot joint in a first direction by applying a first torque, and to rotate each wheel assembly about the respective pivot joint in a second direction, opposite the first direction, by applying a second torque. A magnitude of the first torque and a magnitude of the second torque are substantially equal.