摘要:
The light-wave circuit module includes a substrate having a spot of substantially circular concave shape, an optically reflective film formed along an inner surface of the spot, and a planar optical waveguide passing through the spot. Light in the optical waveguide is reflected and focused obliquely upward by the optically reflective film in the spot.
摘要:
An optical communications Module for use in an optical transfer system for bidirectionally transferring a light signal through an optical fiber, the optical communications module having a light signal transmission capability, wherein the optical communications module includes: a semiconductor laser; an optical fiber coupled to a front facet of the semiconductor laser; a light splitting element for splitting light which is emitted from the front facet of the semiconductor laser and propagated within the optical fiber; and, an output-monitoring photodiode for receiving a portion of the light which has been split by the light splitting element as monitoring light, and generating a photocurrent based on the monitoring light, the photocurrent being used for controlling optical output of the semiconductor laser.
摘要:
A bidirectional optical semiconductor apparatus of the present invention includes: a substrate embedding an optical waveguide, through which output light and input light are propagated; a semiconductor light-emitting device for emitting the output light toward one end of the optical waveguide; an optical branching filter, provided in the optical waveguide, for transmitting at least part of the output light and guiding at least part of the input light to the outside of the optical waveguide; a semiconductor light-receiving device, provided over the substrate, for receiving the input light guided by the optical branching filter to the outside of the optical waveguide; and a light-blocking member, formed on the surface of the semiconductor light-receiving device, for blocking the light emitted from the semiconductor light-emitting device.
摘要:
The optical transmitter/receiver apparatus of the invention includes: an optical fiber for transmitting/receiving an optical signal therethrough; and a first base including mutually spaced optical signal transmitting and receiving regions and a fiber end supporting region located between the optical signal transmitting and receiving regions. A semiconductor laser device for emitting the optical signal to be transmitted is secured to the optical signal transmitting region of the first base. A fiber end supporting portion for supporting one end of the optical fiber, to which the optical signal emitted from the semiconductor laser device is incident, is formed in the fiber end supporting region of the first base. A second base for supporting the body of the optical fiber is secured to the optical signal receiving region of the first base. A reflective filter for transmitting the optical signal to be transmitted, emitted from the semiconductor laser device, and for reflecting the optical signal to be received, incident through the other end of the optical fiber, is supported by being inserted into the second base and the body of the optical fiber. A light-receiving device for receiving the optical signal to be received, reflected by the reflective filter, is secured to the second base.
摘要:
A semiconductor light-receiving device comprises a substrate, an optical fiber, a semiconductor light-receiving element, an optical member, and holders. A groove for a buried optical fiber is formed in the main surface of the substrate to extend from one end of the substrate to the other end thereof. The optical fiber is buried in the optical fiber groove and covered with a resin material. The semiconductor light-receiving element has a light-receiving portion at a surface thereof in opposing relation to the main surface of the substrate and is disposed on the main surface of the substrate via bumps such that the light-receiving portion is opposed to the optical fiber. The optical member is disposed in the substrate in an intersecting relationship with the optical fiber to reflect or diffract signal light propagated through the optical fiber and irradiate the light-receiving portion of the semiconductor light-receiving element with the reflected or diffracted signal light. The holders are provided in the substrate to suppress a temperature-dependent variation in the width of the optical fiber groove.
摘要:
A planar optical waveguide includes a layered film formed on a substrate, and an optical waveguide core formed in the layered film. A cross section of the optical waveguide core is substantially quadrilateral, and a dopant layer including refractive index-lowering molecules is provided around the optical waveguide core. The refractive index-lowering molecules included in the dopant layer are unevenly distributed in the optical waveguide core with a concentration that is higher toward outer sides and corners of the optical waveguide core, whereby a graded-index optical waveguide is constituted.
摘要:
A bidirectional optical semiconductor apparatus of the present invention includes: a substrate embedding an optical waveguide, through which output light and input light are propagated; a semiconductor light-emitting device for emitting the output light toward one end of the optical waveguide; an optical branching filter, provided in the optical waveguide, for transmitting at least part of the output light and guiding at least part of the input light to the outside of the optical waveguide; a semiconductor light-receiving device, provided over the substrate, for receiving the input light guided by the optical branching filter to the outside of the optical waveguide; and a light-blocking member, formed on the surface of the semiconductor light-receiving device, for blocking the light emitted from the semiconductor light-emitting device.
摘要:
The optical fiber amplifier of this invention includes plural pump light sources for emitting pump light; a first wavelength multiplexer for receiving the pump light emitted by the pump light sources at plural input ports and wavelength multiplexing the received pump light, so as to generate wavelength multiplexed pump light and output the wavelength multiplexed pump light from an output port; a second wavelength multiplexer for receiving the wavelength multiplexed pump light at a first input port and receiving signal light at a second input port, so as to generate coupled light by coupling the wavelength multiplexed pump light and the signal light and emit the coupled light from an output port; and a rare earth-doped optical fiber for receiving the coupled light emitted from the output port of the second wavelength multiplexer and amplifying the coupled light. At least one of the pump light sources is a narrow-linewidth light source for emitting light with a laser linewidth of approximately 5 nm or less as the pump light.
摘要:
The erbium-doped fiber amplifier comprises: a first erbium-doped optical fiber pumped by 0.98 .mu.m band light and amplifying the signal light; a first pump light source for producing the 0.98 .mu.m band light; a first optical coupler for coupling the 0.98 .mu.m band light with the signal light at an input portion of the first optical fiber; a second erbium-doped optical fiber pumped by 1.48 .mu.m band light and amplifying the signal light; a second pump light source for producing the 1.48 .mu.m band light; and a second optical coupler for coupling the 1.48 .mu.m band light with the signal light at an output portion of the second optical fiber; wherein a pump light isolator is installed between the first optical fiber and the second optical fiber for blocking the passing of the 1.48 .mu.m band light from the second optical fiber to the first optical fiber while allowing the passing of the signal light.
摘要:
The optical fiber amplifier includes a rare earth doped optical fiber and a pumping light source for outputting pumping light for pumping the rare earth doped optical fiber, the optical fiber amplifier optically amplifying signal light received at an input end and outputting the amplified signal light from an output end, wherein the optical fiber amplifier further includes an optical fiber resonator for laser-oscillating a portion of light of spontaneous emission generated in the rare earth doped optical fiber, which has a wavelength shorter than the wavelength of the signal light, thereby to keep a gain substantially fixed independent of a variation in the wavelength of the signal light.