摘要:
An endoscope system in accordance with an embodiment of the present invention includes an endoscope with a monochrome image pickup device for capturing reflected light and fluorescence from the body cavity, an excitation light cut filter which is installed in front of the image pickup device for shielding excitation light, and an endoscope ID which includes information on the type of the endoscope. A light source unit includes a first switching filter that irradiates light including excitation light for a fluorescent image mode and a filter for generating continuous light for a normal-light image mode. The filters switch based between the fluorescent image mode and the normal-light image mode. A second switching filter with a limiting filter that limits certain wavelengths of excitation light of the first switching filter is provided. The limiting filters are switched according to the endoscope ID or observation state in the fluorescence mode. The excitation light cut filter shields excitation light generated by the first and second filters.
摘要:
In the light source unit 3A, a switching filter section 14, which can switch the RGB filter for normal-light observation and a filter for fluorescent observation on the optical path, is installed in front of the lamp 12, where if the fluorescent image mode is selected, the excitation light in a part of the blue wavelength band is supplied to the electronic endoscope 2A, and the excitation light reflected by the subject side is shielded by the excitation light cut filter 27 in front of the CCD 28 so as to obtain the fluorescent image, and also the signal of the fluorescent image and the signals of the two reflected light images which are set in a predetermined wavelength band are passed through the image processing circuit 38, where a matrix circuit for appropriately allocating the color signals of the R, G and B channels is installed, and as a result, the images can be displayed on the monitor 5 in pseudo-colors in hues which allow easy identification of a normal tissue and a pathologically affected tissue.
摘要:
In the light source unit 3A, a switching filter section 14, which can switch the RGB filter for normal-light observation and a filter for fluorescent observation on the optical path, is installed in front of the lamp 12, where if the fluorescent image mode is selected, the excitation light in a part of the blue wavelength band is supplied to the electronic endoscope 2A, and the excitation light reflected by the subject side is shielded by the excitation light cut filter 27 in front of the CCD 28 so as to obtain the fluorescent image, and also the signal of the fluorescent image and the signals of the two reflected light images which are set in a predetermined wavelength band are passed through the image processing circuit 38, where a matrix circuit for appropriately allocating the color signals of the R, G and B channels is installed, and as a result, the images can be displayed on the monitor 5 in pseudo-colors in hues which allow easy identification of a normal tissue and a pathologically affected tissue.
摘要:
An endoscope system comprising an endoscope which incorporates an imaging element together with an element for determining the type of the imaging element; a light source apparatus, which includes a DMD in a light path from a light source lamp, for determining incidence or non-incidence of the illuminating light from the light source lamp on a mirror; a CPU which determines the type of imaging element based on the information provided by the type determining element and detects a time required by the imaging element for charge reading based on the determination result; and a DMD control circuit which controls the DMD at a charge reading timing of the imaging element corresponding to the charge reading time detected by the CPU, the endoscope system making it possible to extend the exposure time to a maximum regardless of the type of the endoscope, by controlling the light shielding time of illuminating light in accordance with the type of the imaging element.
摘要:
An endoscope system includes a light source for supplying three narrow wavelength bands including one wavelength band for exciting fluorescence, an excitation light cut filter for transmitting light having a wavelength greater than either 470 nm or 490 nm, and an image capturing unit for capturing the light transmitted by the excitation light cut filter and outputting three wavelength band signals corresponding to the three narrow wavelength bands of the light source. Also included are first, second and third frame memories for inputting and storing the three wavelength band signals, respectively, and first, second and third output ends for outputting first, second and third color signals, respectively, to a monitor for displaying an image. An image processor receives signals from the first, second and third frame memories respectively and selects among the first output end, the second output end and third output end for outputting the received signals to the monitor.
摘要:
An image processing device for an endoscope, wherein a wavelength band filter for shielding at least a part of the blue wavelength band is disposed in front of an image pickup element built into the endoscope, for image processing the signal output by said image pickup element includes means for generating color image signals whilst switching between a normal-light image mode using white light and a fluorescence image mode including fluorescence information and adjusting means for adjusting the gain of a prescribed color signal of said color image signals.
摘要:
In a light source unit, a switchable filter section in which an RGB filter and a fluorescence observation filter can be shifted into the light path is disposed in front of a lamp. When fluorescence image mode is selected, excitation light in a part of the wavelength band of the blue wavelength band is supplied to an electronic endoscope, and the excitation light which is reflected by the subject is shielded by an excitation light shielding filter situated in front of a CCD, whereby a fluorescence image can be obtained. On the other hand, if normal-light image mode is selected, then R, G, B light is supplied sequentially, and even under illumination of B light, the color component image in the wavelength bands which are not shielded by the excitation light shielding filter are captured, thereby yielding a normal-light image also, and hence making it possible to capture both a fluorescence image and a normal-light image by means of a single image pickup element.
摘要:
An electronic endoscope apparatus has an arrangement that its discrimination circuit discriminates the type or the operational state of the light source in accordance with a discrimination signal transmitted from a discrimination signal generator, and in accordance with the result of the discrimination, the processing operation to be performed by its video signal processing circuit is changed over to correspond to the difference in the type or the operational state of the light source. The video signal processing circuit performs a proper signal processing operation to correspond to the difference in the type of the light source to prevent deterioration in the image quality. The electronic endoscope apparatus is structured so that a different type light source can be adaptably connected to it.