Abstract:
An interferometer is provided, comprising a source, a unit under test (UUT) with at least a first surface and second surface, a reflective optic, a detector and light from the source. The light is transmitted through the unit under test and reflects off of the reflective optic, which directs the light back to the unit under test. A first portion of light is reflected off the first surface of the UUT. A second portion of light is reflected off the second surface of the UUT. The first and second portions of light are then reflected by the reflective optic and are then transmitted through the UUT. The two portions of light are incident on the detector, where the first and second portions of light coherently add and the interference pattern is detected by the detector. A method for measuring the transmitted wavefront of the UUT is also provided.
Abstract:
An interferometer is provided, comprising a source, a unit under test (UUT) with at least a first surface and second surface, a reflective optic, a detector and light from the source. The light is transmitted through the unit under test and reflects off of the reflective optic, which directs the light back to the unit under test. A first portion of light is reflected off the first surface of the UUT. A second portion of light is reflected off the second surface of the UUT. The first and second portions of light are then reflected by the reflective optic and are then transmitted through the UUT. The two portions of light are incident on the detector, where the first and second portions of light coherently add and the interference pattern is detected by the detector. A method for measuring the transmitted wavefront of the UUT is also provided.
Abstract:
A head-up display assembly includes a liquid crystal display element, a first backlight light source, and a remote backlight light source. The first light source is physically mounted in proximity to the liquid crystal display element, and is operable to directly backlight illuminate the liquid crystal display element. The remote light source mounted physically remote from the liquid crystal display element, and is operable to backlight illuminate the liquid crystal display element via a light guide.
Abstract:
Methods and apparatus are provided for generating and transmitting a substantially uniform light output. The apparatus includes a spatially modulated extended light source configured to project an output having at least one region of diminished illumination, and an array of polarizing beam splitters (PBSs) positioned proximal to the spatially modulated extended light source. The light source includes at least two light outputs configured to project unpolarized light; and at least one gap interspersed between the light outputs. The array of PBSs is configured to receive the output from the light source, convert the unpolarized light to light having a first polarized state, and remove the at least one region of diminished illumination. The method includes splitting unpolarized light emitted from each light emission aperture of a spatially modulated extended light source into a first beam having a first polarized state and a second beam having a second polarized state, converting the second beam from the second polarized state to the first polarized state, and transmitting the first beam having the first polarized state and the second beam having the first polarized state.
Abstract:
An electronic dimming system for use in projection displays is provided. In a first embodiment, the dimming system comprises a first non-absorbing polarizer, a variable polarization rotator, a second non-absorbing polarizer and a heat absorber. The first non-absorbing polarizer receives light from a light source and passes the light of a selected polarization to the variable polarization rotator. The variable polarization rotator selectively rotates the polarization of the received light. The light passes from the variable polarization rotator to the second non-absorbing polarizer. The second non-absorbing polarizer passes only light of a second selected polarization. The light that passes the second non-absorbing polarizer is passed to the display, where it is used to illuminate the display. The system provides the ability to control the amount of light passed to the display by selectively rotating the polarization of the light with the variable polarization rotator.
Abstract:
A beam folder increases optical length with polarizing beam splitters and reflectors that repolarize a beam by retarding it. An incident beam encounters the beam splitters multiple times, and are both passed and rejected by the same splitters. The splitters and repolarizing reflectors can be shaped to perform optical functions in a smaller volume. Valves and controls can vary the beam intensity and combine multiple beams. Applications include projection, imaging, collimating, mixing, and balancing.
Abstract:
A new and useful lighting system is provided, that is particularly useful as a lighting system for a deck (e.g. a ship deck), where pilots taking off from or landing on the deck often use night vision goggles. In addition, a new and useful optical projection structure for a portion of the lighting system is provided. The lighting system comprises at least a pair of lighting subsystems that project light to a volume space with different spatial distributions. One subsystem projects light to the volume space with a predetermined spatial distribution, and the other lighting subsystem projects light to the volume space with a different spatial distribution, in a manner that effectively supplements the projected light from the first subsystem, so as to provide a lighting system that effectively illuminates the entire volume space. Moreover, the system is designed to be particularly compatible with the optical capabilities of night vision goggles. The system is designed to substantially filter out light in a predetermined wavelength band that is “out of band” of night vision goggles (i.e. the wavelength band at which light vision goggles operate), so that the projected light effectively illuminates the deck, and does not interfere with the vision of pilots who are using night vision goggles. The new optical projection structure is particularly useful in projecting light from a source (e.g. an array of light emitting diodes [“LEDs”]) to a volume space, while minimizing the overall size of the projection structure, and maintaining good projection efficiency.
Abstract:
Precision approach path indicator systems (PAPIs) effective in providing approach slope guidance for aircraft approaching an airport runway are provided. Such PAPIs include a plurality of light assemblies positioned on or in proximity to an airport runway and structured or configured to be effective in providing approach slope guidance light signals to a pilot of an aircraft approaching a runway. Each light assembly includes a light source comprising light emitting diodes (LEDs), preferably a first array of LEDs and a second array of LEDs.
Abstract:
An interferometer comprises a time-delayed source, light emitted from the time-delayed source, a unit under test where the unit under test has a first surface and a second surface, and a detector. The light emitted from the time-delayed source has a delay length. A first portion of the light is reflected off the first surface of the unit under test and a second portion of the light is reflected off of the second surface of the unit under test. A portion of the two reflected portions of light are incident on the detector where the light coherently adds, which forms an interference pattern that is detected by the detector.
Abstract:
Methods and apparatus are provided for color correction and contrast enhancement of projection displays. A visual display system includes a projector having a light source with a fixed spectral output, a display screen receiving the output of the projector and emitting a diffused output, and a color correction contrast enhancement filter positioned between the diffusing screen and a viewer. The filter differentially attenuates primary colors of the emission from the diffusing screen. The method includes projecting a light output from a light source having a fixed spectral output onto a diffusing screen, and attenuating primary colors of the emission from the diffusing screen with a light filter positioned adjacent to the diffusing screen.