摘要:
The present invention provides a method and system to determining a near-field communication interaction in a wireless tracking mesh network. The present invention preferably utilizes near-field communication devices in conjunction with tracking tags to transmit signals for reception by sensors stationed throughout a facility which form a mesh network and forward the signals to an information engine for analysis.
摘要:
The present invention provides a solution to mistaken location calculations based on multipath effects. The present invention determines a real-time location of an object in a facility using a combination of location algorithms, with a signal characteristic for a wireless signal from a communication device attached to the object received at a sensor of a mesh network. The location algorithms preferably include at least two of a proximity algorithm, a radial basis function algorithm, a maximum likelihood algorithm, a genetic algorithm, a minimum mean squared error algorithm, a radiofrequency fingerprinting algorithm, a multilateration algorithm, a time difference of arrival algorithm, a signal strength algorithm, a time of arrival algorithm, an angle of arrival algorithm, a spatial diversity algorithm, and a nearest neighbor algorithm.
摘要:
The present invention provides a solution to backhauling health information. The present invention utilizes a mesh network to backhaul the health information. The system includes a plurality of first tags, a mesh network, and an information engine. Each of the tags represents a first object. The mesh network preferably includes a plurality of plug-in sensors located within the facility. At least one node in the mesh network operates as healthcare device. The information engine is in communication with the mesh network and determines a position location of the healthcare device and an operation of the healthcare device.
摘要:
The present invention provides a solution to backhauling health information. The present invention utilizes a mesh network to backhaul the health information. The system includes a plurality of first tags, a mesh network, and an information engine. Each of the tags represents a first object. The mesh network preferably includes a plurality of plug-in sensors located within the facility. At least one node in the mesh network operates as healthcare device. The information engine is in communication with the mesh network and determines a position location of the healthcare device and an operation of the healthcare device.
摘要:
The present invention provides a method and system for determining a near-field communication interaction in a wireless tracking mesh network. The present invention preferably utilizes near-field communication devices in conjunction with tracking tags to transmit signals for reception by sensors stationed throughout a facility which form a mesh network and forward the signals to an information engine for analysis. Bearers of the near-field communication devices preferably include individuals, objects, assets and rooms of the facility.
摘要:
The present invention provides a method and system for determining a near-field communication interaction in a wireless tracking mesh network. The present invention preferably utilizes near-field communication devices in conjunction with tracking tags to transmit signals for reception by sensors stationed throughout a facility which form a mesh network and forward the signals to an information engine for analysis. Bearers of the near-field communication devices preferably include individuals, objects, assets and rooms of the facility.
摘要:
The present invention provides a solution to backhauling health information. The present invention utilizes a mesh network to backhaul the health information. The system includes a plurality of first tags, a mesh network, and an information engine. Each of the tags represents a first object. The mesh network preferably includes a plurality of plug-in sensors located within the facility. At least one node in the mesh network operates as healthcare device. The information engine is in communication with the mesh network and determines a position location of the healthcare device and an operation of the healthcare device.
摘要:
A system and method for inferring an electronic rendering (170) of an environment (110) comprises a plurality of devices (341 and 345), and a processing device. Each wireless device is capable of determining a distance between a neighboring wireless device. Moreover, each device is capable of performing at least one of the following: determining an environmental attribute of the environment, and determining a location of an object in the environment. The processing device gathers information determined from the plurality of devices and infers the electronic rendering of the environment based on the information gathered.
摘要:
A technique for intra-piconet location determination and tomography is described. This technique uses received signal strength indicator (RSSI) values in conjunction with transmitted power levels to determine the relative location of each device within a small network employing frequency hopped spread spectrum transmission. In addition to the location determination properties of the invention, the geometry of the devices in the network, as well as the path loss information between pairs of devices, may be used to infer the location of absorbers and reflectors within the piconet. This absorption and reflection information may be used in creating the piconet tomography. The approach described in this specification may be applied in conjunction with the Bluetooth wireless Personal Area Network (PAN) specification to determine device locations, mitigate the effects of multi-path, and perform indoor location and security functions, and other application functions requiring cost-effective location determination.
摘要:
An interference-robust coded-modulation scheme for optical communications and a method for modulating illumination for optical communications include optical signal transmitters connected to signal multipliers. The signal to be transmitted is multiplied by a pseudo-random noise code and transmitted within the transmitter emissions. A receiver converts the received modulated light and correlates the received signal. An estimate of the signal to be transmitted is made by multiplying the received signal by the noise code and correlating such multiplication over the length of the code. A threshold switch outputs the correlation result to a bit estimator approximately when a deterministic peak of the output signal exceeds a threshold.