Abstract:
A device, system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.
Abstract:
A CPU module includes a host element configured to perform a high-level host-related task, and one or more data-generating processing elements configured to perform a data-generating task associated with the high-level host-related task. Each data-generating processing element includes logic configured to receive input data, and logic configured to process the input data to produce output data. The amount of output data is greater than an amount of input data, and the ratio of the amount of input data to the amount of output data defines a decompression ratio. In one implementation, the high-level host-related task performed by the host element pertains to a high-level graphics processing task, and the data-generating task pertains to the generation of geometry data (such as triangle vertices) for use within the high-level graphics processing task. The CPU module can transfer the output data to a GPU module via at least one locked set of a cache memory. The GPU retrieves the output data from the locked set, and periodically forwards a tail pointer to a cacheable location within the data-generating elements that informs the data-generating elements of its progress in retrieving the output data
Abstract:
A CPU module includes a host element configured to perform a high-level host-related task, and one or more data-generating processing elements configured to perform a data-generating task associated with the high-level host-related task. Each data-generating processing element includes logic configured to receive input data, and logic configured to process the input data to produce output data. The amount of output data is greater than an amount of input data, and the ratio of the amount of input data to the amount of output data defines a decompression ratio. In one implementation, the high-level host-related task performed by the host element pertains to a high-level graphics processing task, and the data-generating task pertains to the generation of geometry data (such as triangle vertices) for use within the high-level graphics processing task. The CPU module can transfer the output data to a GPU module via at least one locked set of a cache memory. The GPU retrieves the output data from the locked set, and periodically forwards a tail pointer to a cacheable location within the data-generating elements that informs the data-generating elements of its progress in retrieving the output data.
Abstract:
A device, system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.
Abstract:
A CPU module includes a host element configured to perform a high-level host-related task, and one or more data-generating processing elements configured to perform a data-generating task associated with the high-level host-related task. Each data-generating processing element includes logic configured to receive input data, and logic configured to process the input data to produce output data. The amount of output data is greater than an amount of input data, and the ratio of the amount of input data to the amount of output data defines a decompression ratio. In one implementation, the high-level host-related task performed by the host element pertains to a high-level graphics processing task, and the data-generating task pertains to the generation of geometry data (such as triangle vertices) for use within the high-level graphics processing task. The CPU module can transfer the output data to a GPU module via at least one locked set of a cache memory. The GPU retrieves the output data from the locked set, and periodically forwards a tail pointer to a cacheable location within the data-generating elements that informs the data-generating elements of its progress in retrieving the output data.
Abstract:
A system and method for generating a single compressed vector including two or more predetermined attribute values. For each of a plurality of data points such as pixels, if a first and a second attribute values of the data point are equal to a first and a second, respectively, of the two or more predetermined attribute values, the compressed vector is used to operate on the data point. Other embodiments are described and claimed.
Abstract:
An approach to outputting 256-color pixel data more quickly than conventional systems is provided. In this approach, a word of data encoding a color bit map for up to eight pixels may be stored in a system buffer and then written to a video adapter. The video adapter is configured such that color codes for multiple pixels may be simultaneously written into the planes of the display memory of the adapter. As a result, 256-color pixel data may be more quickly drawn on a video display than in conventional systems.
Abstract:
A system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.
Abstract:
A system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.
Abstract:
A system and method for generating a single compressed vector including two or more predetermined attribute values. For each of a plurality of data points such as pixels, if a first and a second attribute values of the data point are equal to a first and a second, respectively, of the two or more predetermined attribute values, the compressed vector is used to operate on the data point. Other embodiments are described and claimed.