Abstract:
The multiple panel heat exchanger includes two or more heat exchange panels arranged side-by-side series with their major cross-sectional areas normal to airflow across the heat exchanger. The heat exchange panels are fluidically connected in series and with a first heat exchange panel in the series having a heat exchange fluid inlet into the heat exchanger and a last heat exchange panel in the series having a heat exchange fluid outlet from the heat exchanger. An inlet liquid refrigerant injector and vaporizer has a valve that can control the rate of injection and can close completely. The panels are connected by a pipe assembly containing another valve that can also control the rate of gas refrigerant passage and which can also be closed.
Abstract:
An atmospheric water harvester includes a cooling member over which humid air flows to condense moisture from the atmosphere. The cooling member may be the evaporator of a conventional, gas vapor-based refrigeration circuit. If a gas vapor-based refrigeration circuit is used, the compressor of the circuit may be variable speed. A fan or impeller used to move air through the system may also be variable speed. A preferred embodiment includes a variable flow geometry thermal economizer section configured such that, to varying degrees, the incoming air may be pre-cooled, before it passes over the cooling member, by heat exchange with colder air that has already flowed over the cooling member.
Abstract:
An atmospheric water harvester includes a cooling member over which humid air flows to condense moisture from the atmosphere. The cooling member may be the evaporator of a conventional, gas vapor-based refrigeration circuit. If a gas vapor-based refrigeration circuit is used, the compressor of the circuit may be variable speed. A fan or impeller used to move air through the system may also be variable speed. A preferred embodiment includes a variable flow geometry thermal economizer section configured such that, to varying degrees, the incoming air may be pre-cooled, before it passes over the cooling member, by heat exchange with colder air that has already flowed over the cooling member.
Abstract:
Processes and apparatus are disclosed for separating and purifying aqueous solutions such as seawater by causing a substantially impermeable mat of gas hydrate to form on a porous restraint. Once the mat of gas hydrate has formed on the porous restraint, the portion of the mat of gas hydrate adjacent to the restraint is caused to dissociate and flow through the restraint, e.g., by lowering the pressure in a collection region on the opposite side of the restraint. The purified or desalinated water may then be recovered from the collection region. The process may be used for marine desalination as well as for drying wet gas and hydrocarbon solutions. If conditions in the solution are not conductive to forming hydrate, a heated or refrigerated porous restraint may be used to create hydrate-forming conditions near the restraint, thereby causing gas hydrates to form directly on the surface of the restraint.
Abstract:
An apparatus is disclosed which allows the hydrate formed in the hydrate formation region of a desalination fractionation apparatus to be cooled as it rises in the apparatus. This has the beneficial effect of increasing its stability at lower pressures and reducing the depth at which the hydrate will begin to dissociate. The present invention provides for more efficient management of the distribution of thermal energy within the apparatus as a whole by controlling the flow of water through the system—particularly residual fluids remaining after hydrate forms—such that it is substantially downward through the fractionation column and out through a lower portion thereof. Hydrate thus separates from the residual fluid at or nearly at the point of formation, which helps keep the hydrate formation region of the apparatus at a temperature suitable for the formation of hydrate and improves efficiency. Hydrate formation may be enhanced, thereby further improving efficiency, by pre-treating the water-to-be-treated so as to dissolve hydrate-forming gas in it, before further hydrate-forming gas is injected into the water-to-be-treated under conditions conducive to the formation of gas hydrate.
Abstract:
Various methods and apparatus for maximizing the efficiency of hydrate-based desalination or other water purification in open-water or partially open-water installations are disclosed. In one embodiment, water is accessed from depth where the ambient temperature is as cold as possible, which depth is other than the maximum depth of the hydrate fractionation column used in the process. The accessed water preferably is brought to reduced pressures so that gases other than hydrate-forming gases that are dissolved in the water to be treated are exsolved. Using pre-pressurized sources of hydrate-forming substances, including deep-sea natural gas deposits or supplies of liquified natural gas being transported by sea, are also disclosed. A multiple column, detachable column fractionation installation is disclosed, as is a hybrid installation having an underwater hydrate formation portion and a land-based dissociation and heat-exchange section.
Abstract:
A multiple panel heat exchanger and atmospheric water harvester using the same is provided. The multiple panel heat exchanger includes two or more heat exchange panels arranged in side-by-side series with their major cross sectional areas normal to airflow across the heat exchanger. The heat exchange panels are fluidically connected in series and with a first heat exchange panel in the series having a heat exchange fluid inlet into the heat exchanger and a last heat exchange panel in the series having a heat exchange fluid outlet from the heat exchanger. The multiple panel heat exchanger is suited for a heat exchanger in a refrigeration circuit, such as an evaporator in a vapor-compression refrigeration circuit. An atmospheric water harvester including the multiple panel heat exchanger is also provided.
Abstract:
A water handling system features collapsible containers which have ports on either side. The ports allow multiple containers to be connected together so that they can be filled in sequential order. The ports have quick-connect fittings by means of which a cap, an inter-container connector, and/or a spout member can be connected to the containers. Dissolving electrolyte-providing members are suitably provided to be inserted into the containers so that pure water collected, e.g., from an atmospheric moisture harvester can be remineralized.
Abstract:
Areas in which toxic material has been released, particularly in gaseous form but also in liquid form, are decontaminated by forming gas hydrate of the toxic agent. Smaller-molecule toxic agents form sI or sII type hydrates, whereas larger-molecule toxic agents for sH type hydrates. A “companion gas” or “companion agent” is supplied to fill the smaller voids of the sH hydrate, thereby enabling larger-molecule toxic agents to form hydrates by filling the larger voids of the sH hydrate which, but for the presence of the smaller-molecule agent in the smaller voids, would be unstable and not form. Portable as well as fixed, permanently installed apparatus for conducting hydrate-based decontamination is also disclosed.
Abstract:
Methods and apparatus for desalination of salt water (and purification of polluted water) are disclosed. Salt (or otherwise polluted) water is pumped to a desalination installation and down to the base of a desalination fractionation column, where it is mixed with hydrate-forming gas to form either positively buoyant or negatively buoyant (assisted buoyancy) hydrate. The hydrate rises or is carried upward and dissociates (melts) into the gas and pure water. In preferred embodiments, residual salt water which is heated by heat given off during formation of the hydrate is removed from the system to create a bias towards overall cooling as the hydrate dissociates endothermically at shallower depths. In preferred embodiments, the input water is passed through regions of dissociation in heat-exchanging relationship therewith so as to be cooled sufficiently for hydrate to form at pressure-depth. The fresh water produced by the system is cold enough that it can be used to provide refrigeration, air conditioning, or other cooling; heat removed from the system with the heated residual water can be used for heating or other applications.