Abstract:
A method for joining a tube and tube plate for use in a tube-and-shell heat exchanger is disclosed. The method enables a joint between the tube and tube plate that is substantially hermetic and substantially corrosion-resistant. The method comprises providing an anvil inside the tube, wherein the anvil supports the tube wall during a friction-stir welding process used to join the tube and tube plate. The anvil facilitates formation of a reliable weld region and enables faster friction-stir welding.
Abstract:
A method for forming a joint between a tube and a sheet includes forming an anvil at least within the tube, and welding the tube to the sheet in the presence of the anvil. The anvil includes an anchor which is placed within the tube near or at the joint to be formed. At least one washer is placed over the end of the anchor that is near the joint to be formed. A threaded fastener is then placed into the anchor to securely hold the anchor within the tube and to provide a backing substantial enough so that a friction stir weld can be formed. The threaded fastener and the washer can be used as a guide for the friction stir weld. Once the weld is completed, the anvil can be removed. The weld can be further processed to remove burrs and other material.
Abstract:
A hybrid plate-fin heat exchanger for exchanging heat between a first fluid and a second fluid is disclosed. The hybrid plate-fin heat exchanger comprises a plurality of plates, each of which comprises channels for conveying the first fluid. Fins are brazed onto each plate, wherein the fins define a plurality of flow channels for the second fluid. The plates are joined to one another via friction-stir welding in such a way that the brazed regions are fluidically isolated from the first fluid during operation. As a result, the heat exchanger is suitable for use in applications that use a first fluid, such as seawater or geothermal fluid, which is corrosive for the brazed regions.
Abstract:
A friction stir welding device may include a rotatable head, a rotatable upper shoulder, a lower shoulder and a pin device. The rotatable head includes a first multisided connection portion. The rotatable upper shoulder includes a first cavity and a second multisided connection portion. The second multisided connection portion is configured to engage the first multisided connection portion. The lower shoulder includes a second cavity and a third multisided connection portion. The pin device includes a first end and a second end. At least a portion of the second end includes a fourth multisided connection portion. The fourth multisided connection portion can be configured to engage the third multisided connection portion. The pin device may be configured to retractably traverse the rotatable upper shoulder via the first cavity. The rotatable upper shoulder, the pin device and the lower shoulder may be configured to friction stir weld a workpiece.
Abstract:
A heat exchanger for exchanging heat between a first fluid and a second fluid is disclosed; wherein the heat exchanger has improved thermal efficiency and low fluid back pressure. The heat exchanger comprises conduits for conveying the first fluid, wherein the conduits include a plurality of flow passages. The flow passages are defined by a plurality of fins that are continuous along the direction of flow of the first fluid. Each fin includes a wave-shaped region, and adjacent fins sub-divide each flow passage into first and second sections that are interposed by a third section. The wave-shape of the fins creates a continuously varying cross-sectional area for each third section. The variation of the cross-sectional area of the third section, coupled with the wave-shape of the fins, induces a swirl flow between the third section and each of the first and second sections. This swirl flow improves the efficiency of the overall convection heat transfer in each conduit. Further, the overall cross-sectional area of each conduit remains constant even as the cross-sectional areas of individual flow passages changes, which mitigates the development of back pressure in the flow of the first fluid.
Abstract:
A heat exchanger comprising a plurality of plates that are demountably attached to a frame is disclosed. Each plate comprises a plurality of channels for conveying a primary fluid through the heat exchanger. The frames are arranged in the frame so that spaces between adjacent frame pairs define conduits for conveying a secondary fluid through the heat exchanger. The plates are mounted in the frame so that they can be individually removed from the frame. Further, each of the channels is fluidically connected to input and output ports for the primary fluid by detachable couplings. As a result, heat exchangers in accordance with the present invention are more easily repaired or refurbished than prior-art heat exchangers.
Abstract:
A heat exchanger and a method for fabricating the heat exchanger are disclosed. The heat exchanger comprises a heat exchanger core that is formed from a plurality of stacked aluminum panels that are joined together via friction stir welding. Each panel in the core is formed from at least two aluminum extrusions that are joined to one another via friction stir welding.
Abstract:
A heat exchanger comprising a plurality of plates that are demountably attached to a frame is disclosed. Each plate comprises a plurality of channels for conveying a primary fluid through the heat exchanger. The frames are arranged in the frame so that spaces between adjacent frame pairs define conduits for conveying a secondary fluid through the heat exchanger. The plates are mounted in the frame so that they can be individually removed from the frame. Further, each of the channels is fluidically connected to input and output ports for the primary fluid by detachable couplings. As a result, heat exchangers in accordance with the present invention are more easily repaired or refurbished than prior-art heat exchangers.
Abstract:
Shell-and-tube heat exchangers that utilize one or more foam heat transfer units engaged with the tubes to enhance the heat transfer between first and second fluids. The foam of the heat transfer units can be any thermally conductive foam material that enhances heat transfer, for example graphite foam. These shell-and-tube heat exchangers are highly efficient, inexpensive to build, and corrosion resistant. The described heat exchangers can be used in a variety of applications, including but not limited to, low thermal driving force applications, power generation applications, and non-power generation applications such as refrigeration and cryogenics. The foam heat transfer units can be made from any thermally conductive foam material including, but not limited to, graphite foam or metal foam. In an embodiment, the heat exchanger utilizes tubes that are twisted around a central foam heat transfer unit.
Abstract:
Heat exchangers are described that employ fins made of a heat conducting foam material to enhance heat transfer. The foam fins can be used in any type of heat exchanger including, but not limited to, a plate-fin heat exchanger, a plate-frame heat exchanger or a shell-and-tube heat exchanger. The heat exchangers employing foam fins described herein are highly efficient, inexpensive to build, and corrosion resistant. The described heat exchangers can be used in a variety of applications, including but not limited to, low thermal driving force applications, power generation applications, and non-power generation applications such as refrigeration and cryogenics. The fins can be made from any thermally conductive foam material including, but not limited to, graphite foam or metal foam.