摘要:
An acoustic wave device includes first and second 3-IDT acoustic wave filters provided on a piezoelectric substrate. A second IDT in the first acoustic wave filter is electrically connected to a second IDT in the second acoustic wave filter and a third IDT in the first acoustic wave filter is electrically connected to a third IDT in the second acoustic wave filter to cascade the first acoustic wave filter with the second acoustic wave filter. An acoustic wave resonator is connected to a first IDT in the first acoustic wave filter. In the acoustic wave device, NA/NB is in a range from about 2.6 to about 3.5 and fB/fa is in a range from about 0.995 to about 1.010.
摘要:
A longitudinally-coupled-resonator surface acoustic wave filter device has a sufficient pass-band width, in which a large attenuation in a stop band near the low-frequency side of a pass band and sharp filter characteristics, and low insertion loss in the pass band are achieved. The filter device is a five-IDT longitudinally-coupled-resonator acoustic wave filter device including a first IDT, second and third IDTs arranged on either side of the first IDT in a direction of propagation of surface waves, and fourth and fifth outermost IDTs in the direction of propagation of surface waves, wherein when the first IDT has the number of electrode fingers N1 and an electrode finger pitch P1, the second and third IDTs have the number of electrode fingers N2 and an electrode finger pitch P2, and the fourth and fifth IDTs have the number of electrode fingers N3 and an electrode finger pitch P3, a relationship of N1
摘要:
A reception filter includes a first and second longitudinally coupled resonator-type surface acoustic wave filter portions and a surface acoustic wave resonator. The first and second longitudinally coupled resonator-type surface acoustic wave filter portions each include at least three IDT electrodes. The surface acoustic wave resonator includes one IDT electrode connected to at least one of the at least three IDT electrodes. The reception filter is arranged such that a ratio of a capacitance of the surface acoustic wave resonator to a capacitance of each of the at least one of the at least three IDT electrodes included in the longitudinally coupled resonator-type surface acoustic wave filter portion, the at least one of the at least three IDT electrodes being electrically connected to the one IDT electrode of the surface acoustic wave resonator, is in the range of about 1.9 to about 2.5.
摘要:
A surface acoustic wave filter unit having three interdigital transducers arranged along the surface acoustic wave propagation direction is disposed on a piezoelectric substrate. An unbalanced signal terminal and balanced signal terminals are provided for the surface acoustic wave filter unit. At least one of the three interdigital transducers is out of phase relative to the other interdigital transducers. Reflectors are arranged so as to sandwich the three interdigital transducers therebetween. The reflectors are grounded. Thus, a surface acoustic wave filter having a balance-to-unbalance conversion function and having high balance between the balanced signal terminals is achieved.
摘要:
A surface acoustic wave device includes a plurality of interdigital electrode portions provided so as to have a balanced-unbalanced conversion function. A ratio N2/N1 is the range of about 50% to about 70%, where N1 represents the total number of electrode fingers of an interdigital electrode portion connected on a balanced signal terminal side, and N2 represents the total number of electrode fingers of the interdigital electrode portion connected on the unbalanced signal side, and the meshing width (W) of the interdigital electrode portions is in the range of about 43 λ to about 58 λ in which λ is the wavelength of a surface acoustic wave.
摘要:
A longitudinally coupled resonator type surface acoustic wave element including three interdigital electrode portions is disposed on a piezoelectric substrate. The surface acoustic wave device is constructed so that balance-unbalance conversion can be carried out by using two surface acoustic wave elements, and the input/output impedances are different from each other by about four times. The interdigital pitches in the surface acoustic wave elements are set so as to be different from each other. Alternatively, one-terminal-pair surface acoustic wave resonators are connected in series with at least ones of the input and output sides of the surface acoustic wave elements, the interdigital electrode finger pitches of the one-terminal-pair surface acoustic wave resonators provided on the right and left sides are set to be different from each other.
摘要:
A longitudinally-coupled-resonator surface acoustic wave filter device has a sufficient pass-band width, in which a large attenuation in a stop band near the low-frequency side of a pass band and sharp filter characteristics, and low insertion loss in the pass band are achieved. The filter device is a five-IDT longitudinally-coupled-resonator acoustic wave filter device including a first IDT, second and third IDTs arranged on either side of the first IDT in a direction of propagation of surface waves, and fourth and fifth outermost IDTs in the direction of propagation of surface waves, wherein when the first IDT has the number of electrode fingers N1 and an electrode finger pitch P1, the second and third IDTs have the number of electrode fingers N2 and an electrode finger pitch P2, and the fourth and fifth IDTs have the number of electrode fingers N3 and an electrode finger pitch P3, a relationship of N1
摘要:
A longitudinally coupled resonator type surface acoustic wave filter having a balance-unbalance conversion function achieves improved amplitude balance and phase balance. The surface acoustic wave filter includes first, second and third IDTs. The second IDT is positioned in the center of the three IDTs and has an even number of electrode fingers. The polarity of the electrode finger of the first IDT adjacent to the second IDT is opposite to the polarity of the electrode finger of the third IDT adjacent to the second IDT.
摘要:
An acoustic wave device includes first and second 3-IDT acoustic wave filters provided on a piezoelectric substrate. A second IDT in the first acoustic wave filter is electrically connected to a second IDT in the second acoustic wave filter and a third IDT in the first acoustic wave filter is electrically connected to a third IDT in the second acoustic wave filter to cascade the first acoustic wave filter with the second acoustic wave filter. An acoustic wave resonator is connected to a first IDT in the first acoustic wave filter. In the acoustic wave device, NA/NB is in a range from about 2.6 to about 3.5 and fB/fa is in a range from about 0.995 to about 1.010, where NA denotes the number of electrode fingers of the first IDT in the first acoustic wave filter, NB denotes the number of electrode fingers of each of the second and third IDTs in the first acoustic wave filter, fB denotes the end frequency of a stop band of each of reflectors in the first and second acoustic wave filters, and fa denotes an anti-resonant frequency of the acoustic wave resonator.
摘要:
A surface acoustic wave device includes first stage longitudinally coupled resonator type surface acoustic wave elements and second stage longitudinally coupled resonator type surface acoustic wave elements that are cascaded to each other and are arranged on a piezoelectric substrate. Each of the first and second stage longitudinally coupled resonator type surface acoustic wave elements is provided with at least three IDTs arranged along the direction of transmission of a surface acoustic wave. The central IDT of each of the longitudinally coupled resonator type surface acoustic wave elements includes narrow pitch electrode finger portions. At least one of the number and the pitch of the electrode fingers of the narrow pitch electrode finger portions of the first stage longitudinally coupled resonator type surface acoustic wave elements is set to be different from that of the second stage longitudinally coupled resonator type surface acoustic wave elements.