Abstract:
The present invention discloses a time-sequential multi-spectrum image acquiring device structure which uses a single camera module to achieve multi-spectrum image acquiring in a time-sequential architecture, thereby providing a simple, lightweight telemetry system and reducing the development and operation costs thereof. For example, a visible and near infrared (VNIR) imaging system reduces the use of four camera modules (each including an optical lens, filter, sensor, and image signal processing unit) to single camera module, the VNIR imaging system acquires multi-spectrum images having the same image geometric parameters for image calibration and can simplify the calibration process.The present invention is implemented by introducing a multi-spectrum filter wheel capable of rotating in high speed in the camera module and controlling the image acquiring frequency of the sensor and the synchronicity of the wheel rotating speed for multi-spectrum image acquiring. The present invention is suitable for use in multi-spectrum images acquiring of airborne telemetry requiring lightweight system, such as multi-spectrum images acquiring of unmanned aerial vehicle (UAV).
Abstract:
A system and a method for calibrating an ambient light sensor (ALS) are disclosed. The ALS, an adjustable resistor and a switch are located on a first surface of a printed circuit board (PCB), and the adjustable resistor and the switch are connected in series between an adjustable probe of the ALS and the ground. A resistor is connected between two pads located on a second surface of the PCB via two probes touching the pads. A controller connected to the PCB reads a light sensitivity of the ALS and calculates a calculated resistance value of the adjustable resistor by a formula “detected light sensitivity/resistance value of the resistor=objective light sensitivity/resistance value of the adjustable resistor”, wherein the objective light sensitivity and the resistance value of the resistor are given.
Abstract:
The present invention provides a method for inspecting chip defects. A raw image of a chip is used to extract a chip image. A binary chip edge image obtained from the chip image is used for inspecting defects, coordinated with statistics of edge pixels. During packaging the chip, defects that exceed inspection criteria and affect chip quality are quantitatively and accurately inspected out. The present invention has a simple procedure with high performance on inspecting defect modes and defect sizes. Thus, the present invention greatly improves performance and accuracy of inspections on chip defects for further saving a great amount of labor, time and cost.
Abstract:
The present invention discloses a time-sequential multi-spectrum image acquiring device structure which uses a single camera module to achieve multi-spectrum image acquiring in a time-sequential architecture, thereby providing a simple, lightweight telemetry system and reducing the development and operation costs thereof. For example, a visible and near infrared (VNIR) imaging system reduces the use of four camera modules (each including an optical lens, filter, sensor, and image signal processing unit) to single camera module, the VNIR imaging system acquires multi-spectrum images having the same image geometric parameters for image calibration and can simplify the calibration process.The present invention is implemented by introducing a multi-spectrum filter wheel capable of rotating in high speed in the camera module and controlling the image acquiring frequency of the sensor and the synchronicity of the wheel rotating speed for multi-spectrum image acquiring. The present invention is suitable for use in multi-spectrum images acquiring of airborne telemetry requiring lightweight system, such as multi-spectrum images acquiring of unmanned aerial vehicle (UAV).
Abstract:
A virtual reality-based ophthalmic inspection system includes a wearable unit, an electronic unit, and at least one detector. The wearable unit is available for an inspected object to wear the wearable unit on head. The electronic unit is assembled with the wearable unit and has a left-eye display zone and a right-eye display zone. A first visual acuity of the inspected object is identified according to a first eyesight information. The electronic unit performs a visual correction confirmation process, the at least one detector detects a condition value of corresponding the right eye and/or the left eye, and the electronic unit answers a first comparison result after comparing the condition value with a threshold value.
Abstract:
A virtual reality-based ophthalmic inspection system includes a wearable unit, an electronic unit, and at least one detector; the wearable unit is available for an inspected object to wear the wearable unit on head; the electronic unit is assembled with the wearable unit and has a left-eye display zone and a right-eye display zone, wherein the left-eye display zone is used for displaying at least one left-eye sight-targets, and the right-eye display zone is used for displaying at least one right-eye sight-targets; the detector is disposed on the electronic unit. A sight-target with at least one distinguishing feature are shown on one of the left-eye display zone and the right-eye display zone, the left-eye display zone displays the sight-target while the right-eye display zone is filled with black, and the right-eye display zone displays the sight-target while the left-eye display zone is filled with black.
Abstract:
A speech data retrieving and presenting device applied with an electronic device through a network includes a data receiving unit, a processing unit and a speech presenting unit. The data receiving unit connected to the network receives data of the electronic device through the network. The processing unit coupled to the data receiving unit receives speech data and retrieves a speech presenting signal from the speech data. The speech presenting unit coupled to the processing unit receives the speech presenting signal and outputs a speech according to the speech data. This device can assist a user to obtain network information, and provide the user a more flexible application according to the property that the device can be operated independently by a simple motion.
Abstract:
An exemplary cutting system (1) for a master liquid crystal panel includes a master liquid crystal panel (10) and two charge-coupled devices (12). The master liquid crystal panel includes four corners, and four alignment marks respectively provided at the corners. At least two of the alignment marks at two diagonal corners are different from each other, and the difference are selected from the group consisting of a difference in shape and a difference in distance from a center of the master liquid crystal panel. The charge-coupled devices are positioned adjacent to two adjacent corners of the mother liquid crystal panel at any one time, and are configured to detect and identify the alignment marks at such two adjacent corners. A related method for cutting the master liquid crystal panel is also provided.
Abstract:
The present invention provides a method for inspecting chip defects. A raw image of a chip is used to extract a chip image. A binary chip edge image obtained from the chip image is used for inspecting defects, coordinated with statistics of edge pixels. During packaging the chip, defects that exceed inspection criteria and affect chip quality are quantitatively and accurately inspected out. The present invention has a simple procedure with high performance on inspecting defect modes and defect sizes. Thus, the present invention greatly improves performance and accuracy of inspections on chip defects for further saving a great amount of labor, time and cost.
Abstract:
Disclosed is a chip defect inspection apparatus including a linear array image acquisition module, an illumination control module, a chip defect detection module connected to the LIA module, and an operations and management module connected to the LIA module, the illumination control module and the chip defect detection module.