Abstract:
A microdrive apparatus useful in human stereotactic surgery is disclosed. Such apparatus permits safe and accurate placement of a surgical instrument, such as a cannula, into a portion of the central nervous system, e.g. the brain and spinal cord, of a patient by simple mechanical operation.
Abstract:
The present invention is directed to microdrive apparatus useful in human stereotactic surgery. Such apparatus permits safe and accurate placement of a surgical instrument, such as a cannula, into a portion of the central nervous system, e.g. the brain and spinal cord, of a patient by simple mechanical operation.
Abstract:
Refillable immunoisolatory neurological therapy devices for local and controlled delivery of a biologically active factor to the brain of a patient. The devices include a cell chamber adapted for infusion with nsecretory cells and having at least one semipermeable or permselective surface across which biologically active factors secreted by the cells can be delivered to the brain. The devices also include means for introducing secretory cells into the cell chamber, and means for renewing the cells or cell medium.
Abstract:
Implantable therapy systems are disclosed for the local and controlled delivery of a biologically active factor to the brain, spinal cord and other target regions of a subject suffering from a dibilatating condition. The method of the invention involves surgically exposing an insertion site, generally located above a predetermined treatment site (12), in a patient. A cannula (20), having an obturator (30) or dilator (104) positioned therein, is inserted at the insertion site, defining a pathway to the treatment site. In some instances, the cannula can be inserted along the path of a guidewire (102) previously positioned at the treatment site. The cannula (20) is preferably a low friction polymeric material such as polytetrafluoroethylene. The cannula (20) generally has an open proximal end for receiving the obturator (30) or dilator (104), and an open distal end, preferably a tapered end, for delivery of neurologically active factors to the treatment site (12). The obturator (30) is then removed from the cannula (20), and a biocompatible tethered vehicle (40) containing a biologically active material is inserted into the cannula along the passageway. A pusher can be inserted within the cannula, behind the vehicle (40), to position the proximal end of the vehicle at the proximal tip of the cannula (20b). Once the vehicle (40) is positioned near the proximal end of the cannula (20), the cannula is removed from the passageway, followed by the pusher, leaving the vehicle (40) positioned at the treatment site (12).
Abstract:
Implantable therapy systems are disclosed for the local and controlled delivery of a biologically active factor to the brain, spinal cord and other target regions of a subject suffering from a debilitating condition. The method of the invention involves surgically exposing an insertion site, generally located above a predetermined treatment site (12), in a patient. A cannula (20), having an obturator (30) or dilator (104) positioned therein, is inserted at the insertion site, defining a pathway to the treatment site. In some instances, the cannula can be inserted along the path of a guidewire (102) previously positioned at the treatment site. The cannula (20) is preferably a low friction polymeric material such as polytetrafluoroethylene. The cannula (20) generally has an open proximal end for receiving the obturator (30) or dilator (104), and an open distal end, preferably a tapered end, for delivery of neurologically active factors to the treatment site (12). The obturator (30) is then removed from the cannula (20), and a biocompatible tethered vehicle (40) containing a biologically active material is inserted into the cannula along the passageway. A pusher can be inserted within the cannula, behind the vehicle (40), to position the proximal end of the vehicle at the distal end of the cannula (20b). Once the vehicle (40) is positioned near the distal end of the cannula (20), the cannula is removed from the passageway, followed by the pusher, leaving the vehicle (40) positioned at the treatment site (12).
Abstract:
ARPE-19 cells were evaluated as a platform cell line for encapsulated and unencapsulated cell-based delivery technology. ARPE-19 cells were found to be hardy (the cell line is viable under stringent conditions, such as in central nervous system or intra-ocular environment); can be genetically modified to secrete the protein of choice; have a long life span; are of human origin; have good in vivo device viability; deliver efficacious quantity of growth factor; trigger no or low level host immune reaction, and are non-tumorigenic.