摘要:
The present invention discloses a method and apparatus for measuring AIF and VOF on brain perfusion CT images. The AIF and VOF are used to calculate hemodynamic parameters. In this invention, bone voxels and neighboring voxels are removed first from the perfusion images and thus only brain voxels are included in the AIF and VOF measurement procedures; moreover, the selection criteria, such as large area under the concentration-time curve, early arrival of contrast agents, and narrow effective width, are used to select appropriate arterial and venous voxels for the AIF and VOF measurements.
摘要:
The present invention discloses a method and apparatus for brain perfusion magnetic resonance imaging (MRI) technique with the removal of cerebrospinal fluid (CSF) pixels. This invention utilizes a CSF/brain-contrast-enhanced image, wherein the CSF/brain-contrast-enhanced image is defined as the signal difference between CSF and brain matter divided by a standard deviation of air background random noise is larger than 3, acquired from the subject's brain, and applies a segmentation technique to remove the CSF pixels. After removing the CSF pixels on parametric images, the extent of brain tissue with delayed perfusion can be better identified. By using a good region of interest enclosing the correct delayed-perfusion region, the measurement on the tissue volume and perfusion parameters would be more accurate than the area contaminated by CSF pixels.
摘要:
The present invention discloses a method and apparatus for brain perfusion magnetic resonance imaging (MRI) technique with the removal of cerebrospinal fluid (CSF) pixels. This invention utilizes a CSF/brain-contrast-enhanced image, wherein the CSF/brain-contrast-enhanced image is defined as the signal difference between CSF and brain matter divided by a standard deviation of air background random noise is larger than 3, acquired from the subject's brain, and applies a segmentation technique to remove the CSF pixels. After removing the CSF pixels on parametric images, the extent of brain tissue with delayed perfusion can be better identified. By using a good region of interest enclosing the correct delayed-perfusion region, the measurement on the tissue volume and perfusion parameters would be more accurate than the area contaminated by CSF pixels.