Abstract:
A system and method for controlling a magnetic resonance imaging (MRI) system to create magnetic resonance (MR) cine angiograms of a subject. The method includes controlling the MRI system to acquire MR data from the subject by performing at least one cine acquisition pulse sequence having a plurality of acquisition RF pulse modules applied at constant intervals throughout a cardiac cycle, and at least one labeling pulse sequence including a first and a second α/2 module and a labeling RF pulse module for labeling a region of inflowing arterial flow through a vessel of interest. The method further includes reconstructing the MR data to form a series of cine frames that form a cine angiogram, subtracting at least one cine frame from other cine frames reconstructed from the MR data, and displaying the MR cine angiogram of the vessel of interest.
Abstract:
A magnetic resonance method and system are provided for projection MR imaging of vascular structures within a subject, with scan times that are shorter than those needed for conventional techniques. Image acquisition sequences are synchronized with heartbeat cycles of the subject, and are configured to generate image data having a reduced spatial resolution in the projection direction perpendicular to a preselected projection plane. A reduction factor F quantifies this reduced resolution, such that the number of data acquisition sequences provided within each heartbeat cycle is F times as many as a comparable imaging protocol that generates full-resolution data. The total scan time can be reduced by a factor of F with negligible degradation in the projection image quality.
Abstract:
A method for generating magnetic resonance images of a subject includes performing, using a magnetic resonance imaging (MRI) system, an interrupted three-dimensional (3D) single shot unbalanced steady-state free precession (uSSFP) pulse sequence to acquire MR data for each of a plurality of partitions associated with a region of interest of a subject. The interrupted 3D single shot uSSFP pulse sequence may be configured to suppress blood signal in the region of interest. The MR data for each partition is acquired as a single shot along an in-plane phase-encoding direction and the acquisition of MR data for each partition is synchronized to a phase of a cardiac cycle. The method further includes generating, using a processor, an image with blood suppression based on the acquired MR data.
Abstract:
A system and method for a non-contrast enhanced magnetic resonance imaging technique using a temporal maximum intensity projection reconstructed from multiple temporal subsets of data acquired the acquisition window. The method includes applying a radiofrequency pulse to the subject, waiting a quiescent interval, performing a radial acquisition with a golden-angle view angle increment over a duration corresponding to a cardiac cycle of the subject to generate acquisition data, reconstructing a plurality of images across a plurality of temporal phases from the acquisition data and generating a temporal maximum intensity projection image by tracking an intensity of each pixel across the plurality of images and selecting the pixel having a maximum intensity value across the plurality of images.
Abstract:
A method for operating a Magnetic Resonance (MR) imaging system including generating radio frequency (RF) excitation pulses in a volume of patient anatomy that includes a patient's heart to provide subsequent acquisition of associated RF echo data and generating slice select magnetic field gradients for phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes acquiring a plurality of slices of an image of the volume of patient anatomy within a plurality of cycles representing time period between successive beats of the patient's heart. The method also includes causing, by a control processor, accelerated acquisition of two or more slices of the plurality of slices within a quiescent phase of each of the plurality of cycles. The method further includes applying, by the control processor, one or more saturation areas proximate to a target volume of the patient anatomy.
Abstract:
A method of acquiring magnetic resonance imaging (MRI) data of a subject includes dividing a region of interest into a plurality of slices, and acquiring the slices using an iterative process that interleaves acquisition of shim data covering the plurality of slices with acquisition of image data covering the slices over a plurality of iterations.
Abstract:
In accordance with the present invention, methods are provided for the prevention and/or treatment of enteropathogenic bacterial infection in the gastrointestinal tract of a subject, and the diarrhea associated with the infection, by administration to the subject of a low molecular weight polyethylene glycol, as well concurrent administration with other antibiotic and antidiarrheal agents. Methods for reduction or suppression of inflammation, and inhibition of β1-integrin expression in the gastrointestinal mucosa are also provided. Also described is a kit suitable for use with the methods disclosed.
Abstract:
A system and method for a non-contrast enhanced magnetic resonance imaging technique using a temporal maximum intensity projection reconstructed from multiple temporal subsets of data acquired the acquisition window. The method includes applying a radiofrequency pulse to the subject, waiting a quiescent interval, performing a radial acquisition with a golden-angle view angle increment over a duration corresponding to a cardiac cycle of the subject to generate acquisition data, reconstructing a plurality of images across a plurality of temporal phases from the acquisition data and generating a temporal maximum intensity projection image by tracking an intensity of each pixel across the plurality of images and selecting the pixel having a maximum intensity value across the plurality of images.
Abstract:
A method for generating magnetic resonance images of a subject includes performing, using a magnetic resonance imaging (MRI) system, an interrupted three-dimensional (3D) single shot unbalanced steady-state free precession (uSSFP) pulse sequence to acquire MR data for each of a plurality of partitions associated with a region of interest of a subject. The interrupted 3D single shot uSSFP pulse sequence may be configured to suppress blood signal in the region of interest. The MR data for each partition is acquired as a single shot along an in-plane phase-encoding direction and the acquisition of MR data for each partition is synchronized to a phase of a cardiac cycle. The method further includes generating, using a processor, an image with blood suppression based on the acquired MR data.
Abstract:
A method for generating magnetic resonance (MR) images of a subject includes performing, using a magnetic resonance imaging (MRI) system, a steady-state pulse sequence to acquire MR data from a region of interest in the subject. The steady-state pulse sequence includes a contrast-modifying (CM) radio frequency (RF) pulse applied periodically at a predetermined time interval followed by a gradient spoiler pulse. The CM RF pulse has a flip angle with a value determined based on a minimum Ernst angle for a set of one or more background tissues in the region of interest that the CM RF pulse is configured to suppress with respect to a tissue of interest. The method further includes generating an image with Ti contrast based on the acquired MR data.