Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.
Abstract:
Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.
Abstract:
Electronic devices may be provided with conductive structures such as displays and conductive housing walls. Conductive gaskets may be used to form electrical paths between opposing conductive structures in an electronic device. During device assembly, a conductive gasket may be compressed between opposing conductive structures. The conductive gasket may be formed from a conductive gasket wall structure. The conductive gasket wall structure may surround and at least partly enclose an air-filled cavity. Conductive gasket wall structures may be formed from conductive fabric, dielectric sheets coated with metal, or other conductive wall materials. The interior of a conductive gasket may be hollow and completely devoid of supporting structures or may contain internal structures for biasing the conductive gasket wall outwards. Planar gaskets and gaskets with other cross sections may be provided.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in the base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
Electronic devices may be provided with conductive structures such as displays and conductive housing walls. Conductive gaskets may be used to form electrical paths between opposing conductive structures in an electronic device. During device assembly, a conductive gasket may be compressed between opposing conductive structures. The conductive gasket may be formed from a conductive gasket wall structure. The conductive gasket wall structure may surround and at least partly enclose an air-filled cavity. Conductive gasket wall structures may be formed from conductive fabric, dielectric sheets coated with metal, or other conductive wall materials. The interior of a conductive gasket may be hollow and completely devoid of supporting structures or may contain internal structures for biasing the conductive gasket wall outwards. Planar gaskets and gaskets with other cross sections may be provided.
Abstract:
Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.
Abstract:
Disclosed herein is an implantable pulse generator feedthru configured to make generally planar electrical contact with an electrical component housed within a can of an implantable pulse generator. The feedthru may include a feedthru housing including a header side and a can side, a core within the feedthru housing, a generally planar electrically conductive interface adjacent the can side, and a feedthru wire extending through the core. The feedthru wire may include an interface end and a header end, wherein the header end extends from the header side and the interface end is at least one of generally flush with the generally planar interface and generally recessed relative to the generally planar interface.