摘要:
In one embodiment, a Cable Modem Termination System (CMTS) generates a bandwidth grant message corresponding to a time segment. The CMTS identifies a portion of the time segment to be assigned according to received bandwidth request messages originating from downstream cable modems. The CMTS determines whether a remaining portion of the time segment can accommodate more than N broadcast contention slots, and if so, selects at least one of the cable modems for receiving an upstream bandwidth boost.
摘要:
In a transmission system for transmitting synchronous data portions and asynchronous data portions, a transmission frame includes regularly spaced synchronous data portions interleaved with asynchronous data portions. To insure that the packing density of asynchronous data portions is optimal, the position of the synchronous data portions is allowed to deviate from its nominal value to increase the packing rate of the asynchronous data portions.
摘要:
In one example, a Cable Modem Termination System (CMTS) determines target Radio Frequency (RF) bandwidth amounts for Data Over Cable System Interface Specification (DOCSIS) bonding groups according to the DOCSIS priority of active flows within the bonding groups. The CMTS then tunes bandwidth allocation amongst the DOCSIS bonding groups according to the target bandwidth amounts. The target bandwidth amounts can be recalculated at intervals, and the bandwidth allocation re-tuned at the intervals, to account for changes in flow activity or DOCSIS priority assignment.
摘要:
The present disclosure relates an improved cable data switching unit that provides a fail-over system whereby one line card can protect a plurality of US (upstream) or DS (downstream) channel line cards, providing N+1 protection, with one linecard being able to protect N number of working linecards. When a failure is detected in a working linecard, the signals being routed by the failing linecards are re-routed seamlessly to a protect linecard. This disclosure provides for data to be passively routed, providing for data flow even if power is lost.
摘要:
In one embodiment, a Cable Modem Termination System (CMTS) generates a bandwidth grant message corresponding to a time segment. The CMTS identifies a portion of the time segment to be assigned according to received bandwidth request messages originating from downstream cable modems. The CMTS determines whether a remaining portion of the time segment can accommodate more than N broadcast contention slots, and if so, selects at least one of the cable modems for receiving an upstream bandwidth boost.
摘要:
In one example, a Cable Modem Termination System (CMTS) determines target Radio Frequency (RF) bandwidth amounts for Data Over Cable System Interface Specification (DOCSIS) bonding groups according to the DOCSIS priority of active flows within the bonding groups. The CMTS then tunes bandwidth allocation amongst the DOCSIS bonding groups according to the target bandwidth amounts. The target bandwidth amounts can be recalculated at intervals, and the bandwidth allocation re-tuned at the intervals, to account for changes in flow activity or DOCSIS priority assignment.
摘要:
A system and method for splitting and combining signal in a Cable Modem Terminal Station (CMTS). This system uses a hierarchal approach to connect RF modules to PHY modules. A first splitter and combiner connects each N input in a module to each of N outputs. Each of Nth output is then connected to a Nth second splitter/combiner which in turn connects each input to each output.
摘要:
The invention relates to a method of controlling the operation of a network in which stations share a communication channel. The upstream link of this channel is divided into time slots (4), consisting of a data slot (6) and m control minislots (51a, . . . , 51i, . . . , 51m). This method, comprising a reservation step provided for the transmission, within the minislots, of data packet transmission requests to a head-end station and a transmission step provided for the transmission of these data packets when corresponding acknowledgement signals have been returned to the concerned stations by the head-end station, also comprises an additional congestion resolution step, provided for improving the performance of transmission by an analysis of the occurrence of collisions between transmission requests within the minislots and a subsequent modification of the timing signals of the channel. This modification consists of an allocation of a part of the channel dedicated to the data slots to additional transmission requests, for example of at least an idle data slot (6).