Abstract:
A fuel cell stack having a plurality of connected modules. Each module includes an elongate hollow member and at least one passage extending through the hollow member. Each hollow member has a first flat surface and a second flat surface arranged parallel to the first flat surface. A first module includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. A first end of each module has an integral spacer.
Abstract:
A fuel cell stack comprises a plurality of modules and each module comprises an elongate hollow member and one passage extending through the hollow member for the flow of a reactant. Each hollow member has a first flat surface and a second flat surface. At least one of the modules includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. Each module has a first and second integral feature to provide a spacer and a connection with its adjacent modules. The first integral feature comprises a third flat surface and the second integral feature comprises a fourth flat surface. The third flat surface is arranged at an intersecting angle to the first flat surface and the fourth flat surface is arranged at an intersecting angle to the second flat surface.
Abstract:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
Abstract:
A fuel cell stack (10) comprises a plurality of modules (12) and each module (12) comprises an elongate hollow member (14). Each module (12) has at least one passage (31) extending longitudinally through the hollow member (14) for the flow of a reactant. Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12). The first feature (34) comprises a third flat surface (36) and the second feature (42) comprises a fourth flat surface (44). The fourth flat surface (44) is arranged parallel to the third flat surface (36). The third flat surface (36) is arranged at an intersecting angle to the first flat surface (16) and the fourth flat surface (44) is arranged at an intersecting angle to the second flat surface (18).
Abstract:
A solid oxide fuel cell module (30) comprises a plurality of fuel cells (36). Each fuel cell (36) comprises a first electrode (40), an electrolyte (42) and a second electrode (44). A plurality of interconnectors (38) are arranged to electrically connect the fuel cells (36) in electrical series. Each interconnector (38) electrically connects a first electrode (40) of one fuel cell (36) to a second electrode (44) of an adjacent fuel cell (36). The first electrode (40) comprises a first layer (40A) on the electrolyte (42 to optimize the electrochemical activity at the electrolyte (42) and a second layer (40B) on the first layer (40A) to provide electronic conduction perpendicular to the layers (40, 42, 44) of the fuel cell (36). The second layer (40B) is arranged such that electronic conduction perpendicular to the layers (40, 42, 44)) of the fuel cell (36) is different at different positions in the second layer (40B).
Abstract:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
Abstract:
A fuel cell stack (10) having a plurality of modules (12) and each module (12) having an elongate hollow member (14). Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12).
Abstract:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
Abstract:
A solid oxide fuel cell component (12) comprises a plurality of solid oxide fuel cells (24) arranged in spaced apart relationship, and in electrical series, on a surface of the porous gas permeable support structure (16). Each solid oxide fuel cell (24) comprises a dense gas tight electrolyte member (28), a porous gas permeable first electrode (26) and a porous gas permeable second electrode (30). Each electrolyte (28) is arranged in contact with a corresponding one of the first electrodes (26), each second electrode (30) is arranged in contact with a corresponding one of the electrolytes (28). Each of the first electrodes (26) is arranged in contact with the surface of the support structure (16). The interconnectors (32), the peripheral seal layer (34) and the electrolytes (28) are arranged to encapsulate all of the first electrodes (26) except for the surfaces of the first electrodes (26) in contact with the surface of the support structure (16) to prevent leakage of reactant from the first electrodes (16).
Abstract:
A solid oxide fuel cell module comprises a hollow support member and a plurality of fuel cells spaced apart longitudinally on one surface of the hollow support member. A plurality of interconnectors electrically connect the fuel cells in electrical series. Each fuel cell comprises a first electrode, an electrolyte and a second electrode. The first electrode of each of the fuel cells are electrically connected to the second electrode of adjacent fuel cells by a plurality of interconnectors spaced apart laterally with respect to the hollow support member. A laterally extending end of the first electrode of the said adjacent fuel cell has a plurality of recesses spaced apart laterally with respect to the hollow support member. Each of the interconnectors is positioned in a respective one of the plurality of recesses in the laterally extending end of the first electrode of the said adjacent fuel cell.