摘要:
A pixel signal outputted from an image pickup device in a standard image pickup region of a solid-state image device and a pixel signal outputted from an image pickup device in a camera shake correction region are written into a first memory and a second memory alternately for each screen. By adjusting the number of lines of a video signal upon reading out a signal from the memory, a moving image is outputted as a wide angle image. Further, by outputting all line signals in the memory, a wider angle still image is obtained.
摘要:
A technique of achieving optimal noise suppression with respect to a video signal whose noise amount differs according to brightness is disclosed, and according to the technique, a low-luminance detecting section 18 detects a video signal of a relatively low luminance, a suppression amount setting section 19 generates a noise suppression amount which becomes larger as the luminance of the video signal becomes lower, and a noise suppressing circuit 17 suppresses noise with the noise suppression amount generated by the suppression amount setting section with respect to the video signal of a relatively low luminance detected by the low-luminance detecting section.
摘要:
In a digital video camera unit wherein its CCD outputs an image pickup signal with an odd line and an even line in the 1HD period to convert the image pickup signal to luminance signal and color signal, a line memory portion for separating each line of two image pickup signals existing in the 1HD period to two lines, an address controller and a control circuit for controlling write/read into the line memory portion are provided. At the time of write to the line memory portion, an analog delay amount is absorbed in order to output signals at the same timing as design time upon reading. By changing the write/read frequency with respect to the line memory portion, signals of different frequencies can be processed in a single circuit.
摘要:
A value of CCD signal of a specific pixel and a maximum value of CCD signals of neighboring pixels, which are presented in a neighboring area of the specific pixel and are a same color component as that of the specific pixel, are extracted. In case that a value of subtracting the maximum value of CCD signals of neighboring pixels from the value of CCD signal of the specific pixel exceeds a predetermined value, it is discriminated that a pixel of white defect is presented in the specific pixel and the pixel of white defect is compensated by replacing the value of CCD signal of the specific pixel with the maximum value. In case that a value of subtracting the maximum value of CCD signals of neighboring pixels from the value of CCD signal of the specific pixel does not exceed a predetermined value, it is discriminated that a pixel of white defect is not presented in the specific pixel and the pixel of white defect is compensated by outputting the value of CCD signal of the specific pixel as it is.
摘要:
A technique of achieving optimal noise suppression with respect to a video signal whose noise amount differs according to brightness is disclosed, and according to the technique, a low-luminance detecting section 18 detects a video signal of a relatively low luminance, a suppression amount setting section 19 generates a noise suppression amount which becomes larger as the luminance of the video signal becomes lower, and a noise suppressing circuit 17 suppresses noise with the noise suppression amount generated by the suppression amount setting section with respect to the video signal of a relatively low luminance detected by the low-luminance detecting section.
摘要:
When a still picture information is recorded on the recording medium 7 while a moving picture information is recorded by the VTR 6, a still picture information to be recorded can be confirmed and recorded by displaying the still picture information to be recorded in a sub picture frame on the screen of the viewfinder 8, which displays the moving picture information currently recorded.
摘要:
An image apparatus has a light-receiving section and a light-blocking section. The light-receiving section receives light from an object to generate an analog video signal. The light-blocking section blocks the light to generate reference signals. The analog video signal is converted into a digital video signal. The reference signals are accumulated a predetermined number of times from a predetermined accumulation starting point on scanning lines forming an image of the object for a specific period. The accumulated signal is averaged to generate an average signal. A reference level of the digital video signal is adjusted based on the average signal so that the difference between the digital video signal and the average signal becomes zero. The number of times for accumulation is decided as 2n that is smaller than a specific number “m”, of the scanning lines for forming the image of the object. The accumulation starting point is decided as (m−2n)/2, “n” and “m” being positive integers.