摘要:
A one-time programmable (OTP) memory device includes a memory cell array including a plurality of OTP memory cells, the plurality of OTP memory cells being connected to a plurality of bitlines, a plurality of voltage wordlines and a plurality of read wordlines, respectively; and a switching circuit configured to, in a program mode, detect program states of the plurality of OTP memory cells to block currents from flowing through the plurality of OTP memory cells from the voltage wordlines to the bitlines based on the detected program states.
摘要:
A one-time programmable (OTP) memory device includes a memory cell array including a plurality of OTP memory cells, the plurality of OTP memory cells being connected to a plurality of bitlines, a plurality of voltage wordlines and a plurality of read wordlines, respectively; and a switching circuit configured to, in a program mode, detect program states of the plurality of OTP memory cells to block currents from flowing through the plurality of OTP memory cells from the voltage wordlines to the bitlines based on the detected program states.
摘要:
An integrated circuit device includes a substrate having adjacent first and second regions, and a device isolation structure in the substrate between the first and second regions. The first and second regions of the substrate may respectively include transistors configured to be driven at different operational voltages, and the device isolation structure may electrically separates the transistors of the first region from the transistors of the second region. The device isolation structure includes outer portions immediately adjacent to the first and second regions and an inner portion therebetween. The outer portions of the device isolation structure comprise a material having an etching selectivity with respect to that of the inner portion. Related devices and fabrication methods are also discussed.
摘要:
A method of forming a metal silicide layer includes sequentially forming a metal layer and a first capping layer on a substrate, performing a first heat treatment on the substrate to cause the substrate to react to the metal layer, removing the first, capping layer and an unreacted metal layer, forming a second capping layer on the substrate, and performing a second heat treatment on the substrate to form a metal silicide layer on the substrate.
摘要:
A nonvolatile memory device has a first active region and a second active region defined in a substrate by a device isolation layer, a Metal Oxide Silicon Field-Effect Transistor (MOSFET) disposed on the first active region and including a first electrode pattern, and a Metal Oxide Silicon (MOS) capacitor disposed on the second active region and including a second electrode pattern, and in which the first electrode pattern is narrower in the widthwise direction of the channel of the MOSFET than the first active region.
摘要:
Some embodiments of the present invention provide high voltage transistors including a semiconductor substrate and a device isolation film defining an active region in the semiconductor substrate. A gate electrode extends along a central portion of the active region while maintaining a predetermined width on the semiconductor substrate. A second well is formed on both sides of the gate electrode in the semiconductor substrate, and partially extends to a bottom surface of the device isolation film. The active region in the semiconductor substrate comprises a first active region disposed under the gate electrode, and separating the device isolation film and a second active region defined by the first active region and the device isolation film. Methods of manufacturing high voltage transistors are also provided.
摘要:
Some embodiments of the present invention provide high voltage transistors including a semiconductor substrate and a device isolation film defining an active region in the semiconductor substrate. A gate electrode extends along a central portion of the active region while maintaining a predetermined width on the semiconductor substrate. A second well is formed on both sides of the gate electrode in the semiconductor substrate, and partially extends to a bottom surface of the device isolation film. The active region in the semiconductor substrate comprises a first active region disposed under the gate electrode, and separating the device isolation film and a second active region defined by the first active region and the device isolation film. Methods of manufacturing high voltage transistors are also provided.
摘要:
A nonvolatile memory device has a first active region and a second active region defined in a substrate by a device isolation layer, a Metal Oxide Silicon Field-Effect Transistor (MOSFET) disposed on the first active region and including a first electrode pattern, and a Metal Oxide Silicon (MOS) capacitor disposed on the second active region and including a second electrode pattern, and in which the first electrode pattern is narrower in the widthwise direction of the channel of the MOSFET than the first active region.
摘要:
A schottky diode may include a schottky junction including a well formed in a semiconductor substrate and a first electrode contacting the first well. The well may have a first conductivity type. A first ohmic junction may include a first junction region formed in the well and a second electrode contacting the first junction region. The first junction region may have a higher concentration of the first conductivity type than the well. A first device isolation region may be formed in the semiconductor substrate separating the schottky junction and the first ohmic junction. A well guard having a second conductivity type opposite to the first conductivity type may be formed in the well. At least a portion of the well guard may be formed under a portion of the schottky junction.
摘要:
A schottky diode may include a schottky junction including a well formed in a semiconductor substrate and a first electrode contacting the first well. The well may have a first conductivity type. A first ohmic junction may include a first junction region formed in the well and a second electrode contacting the first junction region. The first junction region may have a higher concentration of the first conductivity type than the well. A first device isolation region may be formed in the semiconductor substrate separating the schottky junction and the first ohmic junction. A well guard having a second conductivity type opposite to the first conductivity type may be formed in the well. At least a portion of the well guard may, be formed under a portion of the schottky junction.