Abstract:
A method of producing an ore slurry includes pulverizing and classifying steps as well as an ore slurry condensing step, wherein the slurry condensing step uses as a flocculant solution a diluted solution of the flocculant that satisfies the conditions of: (A) a flocculant molecular weight of 8×106 to 20×106 and (B) a flocculant dilution ratio of 0.1 to 0.5 g/L, and with respect to the added amount of the flocculant, a flocculant solution having an amount corresponding to 50 to 150 g of the flocculant amount per ton of dried solid components of the ore slurry is added to the ore slurry so as to be made in contact therewith for a sufficient period of time, with the temperature of the slurry being set in a range from 35 to 45° C. upon transporting the slurry from the condensing step to the next process.
Abstract:
A hydrometallurgical plant for nickel laterite ore extraction having a plurality of treatment facility lines wherein the plant is capable of minimizing a decrease in throughput when line failure occurs and efficiently restoring normal operation status Each line of the treatment facility includes a pretreatment step, a leaching step, a solid-liquid separation step, a neutralization step, a zinc removal step, a sulfurization step and a detoxification step. The lines are coupled by pipelines, each having a valve, installed after the solid-liquid separation step for sending a liquid from the solid-liquid separation step to the neutralization step in each line and/or after the sulfurization step for sending a liquid from the sulfurization step to the detoxification step in each line.
Abstract:
A sulfurization facility, where the sulfurizing reaction is conducted in a wet smelting for nickel oxide ore, is improved particularly with the structural modification of its liquid storage vessels so that the consumption of a hydrogen sulfide gas used in a sulfurization step and the consumption of an alkali solution used for processing an exhaust gas can be reduced and the overall cost of operation will thus be minimized. The present invention is directed towards a liquid storage apparatus for use in the sulfurization facility for sulfurizing a sulfate solution to produce a sulfide, the apparatus comprising a plurality of liquid storage vessels (11n) for storing a slurry or a filtrate after solid/liquid separation, a collective conduit (12) for collectively passing an inactive gas to be fed into the liquid storage vessels (11n) or an exhaust gas discharged from the liquid storage vessels (11n), and a pressure control conduit (13) for receiving the flow of the inactive gas and the exhaust gas in order to control the pressure at the inner side of the liquid storage vessels (11n). The pressure control conduit (13) is connected by a junction (30) to the collective conduit (12) and equipped with a pair of pressure control valves (31), (32) mounted at both, front and rear, sides of the junction (30) communicating to the collective conduit (12).
Abstract:
The hydrometallurgical process for a nickel oxide ore comprising a step (1) for obtaining an aqueous solution of crude nickel sulfate by High Pressure Acid Leach of a nickel oxide ore; a step (2) for obtaining a zinc free final solution formed; a step (3) for obtaining a waste solution; and a step (4) for scrubbing a hydrogen sulfide gas in exhaust gas, wherein utilization efficiency of hydrogen sulfide gas is enhanced while maintaining nickel recovery rate.It is characterized in that at least one kind of the following operations (a) to (d) is adopted. (a) to adjust total volume (m3) of the sulfurization reactor (B) in the above step (3), at a ratio of 0.2 to 0.9, relative to input mass (kg/h) of nickel to be introduced; (b) to evaporate, under negative pressure, slurry in the above step (3), and to add hydrogen sulfide gas recovered to the above step (3); (c) to reuse exhaust gas from the sulfurization reactor in the above step (3), and add it to the step (2); and (d) to subject the waste solution in the above step (3) and exhaust gas in the above step (4) to countercurrent contact, then to introduce the exhaust gas to the scrubber again and to charge waste solution from the scrubber into the sulfurization reactor in the step (3).
Abstract:
A wet smelting plant for nickel oxide ore is provided in which, even when a serious trouble occurs in a processing facility, the preparation period of time of the processing facility required for discontinuing and restarting the operation can be minimized. The wet smelting plant for nickel oxide ore (20) comprises two or more series of the processing facilities, each processing facility including a step operating facility, a utility feed facility (8a), (8b), a hydrogen sulfide feed facility (10a), (10b), a flocculant feed facility (14a), (14b), and a neutralizer feed facility (12a), (12b) and is featured in that connecting installations are further provided for connecting between the utility feed facilities (8a) and (8b), between the hydrogen sulfide feed facilities (10a) and (10b), between the flocculant feed facilities (14a) and (14b), and between the neutralizer feed facilities (12a) and (12b) in order to make the delivery of utility supplies, hydrogen sulfide, flocculant, and neutralizer for mutual substitution.
Abstract:
The separation method for zinc sulfide, in the hydrometallurgical process by a High Pressure Acid Leach for nickel oxide ore comprising leaching and solid/liquid separation step, neutralization step, zinc removal step, and nickel recovery step, which can inhibit clogging of a filter cloth and reduce a frequency of washing operation and replacement operation of a filter cloth by improving filtration performance of zinc sulfide, and inhibit decrease of nickel recovery ratio, in the zinc removal step in which zinc sulfide is formed by adding a sulfurizing agent to the neutralization final liquid containing zinc as well as nickel and cobalt and zinc sulfide is separated to obtain a mother liquid for nickel recovery containing nickel and cobalt.The separation method for zinc sulfide of the present invention is characterized in that in the above-described neutralization step, the leach residue is added to the leach liquor, and pH of the neutralization final liquid is adjusted so as to fall to the range from 3.0 to 3.5, and in the zinc removal step, the suspended solid comprising the neutralized precipitate and the leaching reside are kept remained in said neutralization final liquid so that turbidity thereof falls in the range from 100 to 400 NTU.
Abstract:
A system for drawing an outer cylinder of a rubber bush comprising an inner cylinder serving as a shaft member, the outer cylinder disposed around the inner cylinder and a rubber elastic body interposed between the inner cylinder and the outer cylinder, comprising first and second turning tables each having at least two piling portions on which the rubber bushes to be drawn are piled up in a vertical direction; first and driving apparatuses for bringing up the rubber bushes piled up on the piling portion of the first and second turning tables to a predetermined robot grasping position; a drawing apparatus having a die for drawing the outer cylinder of the rubber bush; a robot apparatus for grasping and transferring the rubber bush located at the robot grasping position to set the same to a predetermined position of the die; a control apparatus for controlling the robot apparatus such that the rubber bushes from the piling portion of one of the first and second turning tables are sequentially transferred to the die, and if the transfer of all the former rubber bushes from the piling portion was completed, the rubber bushes from the piling portion of the other one of the first and second turning tables and transferred.
Abstract:
A concentric rotary valve having a rotatable stem of a valve disc supported by bearing portions and metal seats mounted in a valve housing to contact metal seats on the valve disc. Clearances in directions parallel to a closed disc surface and radial of the valve stem are barely enough to permit a shift of the valve disc to provide a good seat-to-seat contact when the valve is closed, and clearances in directions normal to the closed disc surface and radial of the rotatable stem are barely enough to permit normal rotations of the stem.
Abstract:
The wastewater treatment method is to obtain demanganized wastewater, through a step wherein an acid or an alkali is added to sulfuric acid acidified wastewater to adjust pH to not less than 4.0 and not more than 6.0, whereby the sulfuric acid acidified wastewater is separated into a dealuminized solution and an aluminum precipitate; a step wherein a slurrying solution is added to the aluminum precipitate to form a slurry, then an alkali is added to adjust pH to not less than 9.0 and not more than 9.5, whereby an pH-adjusted aluminum precipitate slurry is formed; a step wherein an alkali is added to the dealuminized solution to adjust pH to not less than 8.0 and not more than 9.0; and others.
Abstract:
A method for recovering chromite from ore slurry obtained by processing nickel oxide ore, the raw material, in a plant for the wet smelting of nickel oxide ore. In the method chromite is separated and recovered from an ore slurry obtained from a nickel oxide ore when nickel and cobalt are recovered from the nickel oxide ore. The method has a grain diameter separation step for separating the ore slurry on the basis of a predetermined classification point according to the difference in the grain diameter of particles contained in the supplied ore slurry and a sedimentation separation step for causing the oversized ore slurry separated in the grain diameter separation step to undergo sedimentation and concentration on the basis of a target classification point, and recovering the chromite. The coarse particle content of the oversized ore slurry separated in the grain diameter separation step is adjusted to 30-50%.