摘要:
Methods are provided to form and stabilize high-κ dielectric films by chemical phase deposition processes using metal-source precursors and cerium-based β-diketonate precursors according to Formula I: Ce(L)x (Formula I) wherein: L is a β-diketonate; and x is 3 or 4. Further provided are methods of improving high-κ gate property of semiconductor devices by using cerium precursors according to Formula I. High-κ dielectric films are also provided comprising hafnium oxide, titanium oxide or mixtures thereof, and further containing a permittivity maintaining or increasing amount of cerium atoms.
摘要:
Methods are provided to form and stabilize high-κ dielectric films by vapor deposition processes using metal-source precursors and titanium-based β-diketonate precursors according to Formula I: Ti(L)x wherein: L is a β-diketonate; and x is 3 or 4. Further provided are methods of improving high-κ gate property of semiconductor devices by using titanium precursors according to Formula I. High-κ dielectric film-forming lattices are also provided comprising titanium precursors according to Formula I.
摘要:
The present invention relates to a process for fabricating a composite functional body/substrate, either by melting with an energy beam or by spin coating. The functional material is preferably a piezoelectric material (PVDF). The energy beam is preferably a laser beam.
摘要:
The present invention relates to a process for fabricating a composite functional body/substrate, either by melting with an energy beam or by spin coating. The functional material is preferably a piezoelectric material (PVDF). The energy beam is preferably a laser beam.
摘要:
The present invention relates to a mixed metal oxide of formula SrM1-xTixO3 wherein x is 0>x>1 and M is Hf or Zr, such as a strontium-hafnium-titanium oxide orstrontium-zirconium-titanium oxide, and to a functional device comprising the mixed metal oxide.
摘要:
Methods are provided to form and stabilize high-κ dielectric films by chemical phase deposition processes using metal-source precursors and cerium-based β-diketonate precursors according to Formula I: Ce(L)x (Formula I) wherein: L is a β-diketonate; and x is 3 or 4. Further provided are methods of improving high-κ gate property of semiconductor devices by using cerium precursors according to Formula I. High-κ dielectric films are also provided comprising hafnium oxide, titanium oxide or mixtures thereof, and further containing a permittivity maintaining or increasing amount of cerium atoms.