摘要:
The present invention has a laser and a second energy source act in combination to produce a plasma that emits characteristic radiation for a prolonged period of time. The laser energy is directed to a sample for a period of time to ignite a plasma containing the sample material and to either ablate or vaporize the sample. Energy from a second energy source is supplied to the plasma for a second period of time so that the characteristic radiation emitted by the plasma is maintained. The emitted radiation is used to identify chemical elements contained in the sample. The second period of time is typically larger than the first period of time and may be as long as many milliseconds. Supplying energy for this longer period of time allows the plasma to grow in size and contributes to the large enhancement in the detection sensitivity of the present invention.
摘要:
A method for the removal of nitrogen oxides from waste gases by contacting the waste gas with the products of the pyrolytic decomposition of methane containing CH and CH.sub.2 radicals to reduce the nitrogen oxides to nitrogen.
摘要:
An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.
摘要:
The generation of very high power pulses of coherent electromagnetic radiation that are continuously tunable in frequency is accomplished by means of a free electron laser in which a hollow relativistic electron beam is projected along the longitudinal axis of an evacuated drift tube. A first magnetic field expands the electron beam into an annular peripheral interaction region of the drift tube where the beam interacts with a second periodic radial magnetic field. Frequency is varied by changing the electron velocity of the electron beam or by changing the periodicity of the radial magnetic field. The device can be made to operate as an oscillator by the inclusion of resonant cavity defining mirrors within the interaction region, or as an amplifier by injecting a coherent radiation signal into the interaction region. Both oscillator and amplifier functions can be incorporated into a single device. Linewidth is narrowed by utilizing a Smith-Fox interferometer to couple the generated coherent radiation into an output light pipe.
摘要:
The present invention has a laser and a second energy source act in combination to produce a plasma that emits characteristic radiation for a prolonged period of time. The laser energy is directed to a sample for a period of time to ignite a plasma containing the sample material and to either ablate or vaporize the sample. Energy from a second energy source is supplied to the plasma for a second period of time so that the characteristic radiation emitted by the plasma is maintained. The emitted radiation is used to identify chemical elements contained in the sample. The second period of time is typically larger than the first period of time and may be as long as many milliseconds.Supplying energy for this longer period of time allows the plasma to grow in size and contributes to the large enhancement in the detection sensitivity of the present invention.