Abstract:
Aspects of a method and system for interfacing with an electronic device via respiratory and/or tactual input are provided. In this regard, respiratory and tactual input may be utilized to interact with an electronic device via a user interface. The user interface may comprise a control region that may enable navigating and selecting objects, a fixed region that may enable display of information that may be independent of a state of, or activity in, the control region, and a content region that may enable display of information that may depend on a state of, or activity in, the control region. Accordingly, objects and/or information displayed on the electronic device may be affected and/or manipulated via tactual and respiratory input. Additionally, each region of the user interface may comprise one or more zones and a size, shape, and/or location of each region may be customized by a user.
Abstract:
Aspects of a method and system for interfacing with an electronic device via respiratory and/or tactual input are provided. In this regard, respiratory and tactual input may be utilized to interact with an electronic device via a user interface. The user interface may comprise a control region that may enable navigating and selecting objects, a fixed region that may enable display of information that may be independent of a state of, or activity in, the control region, and a content region that may enable display of information that may depend on a state of, or activity in, the control region. Accordingly, objects and/or information displayed on the electronic device may be affected and/or manipulated via tactual and respiratory input. Additionally, each region of the user interface may comprise one or more zones and a size, shape, and/or location of each region may be customized by a user.
Abstract:
A MEMS/MOEMS sensor and method for using such sensor to detect a person's breath or other fluid for purposes of controlling a user interface of an electronic device.
Abstract:
A MEMS/MOEMS sensor and method for using such sensor to detect a person's breath or other fluid for purposes of controlling a user interface of an electronic device.
Abstract:
A method and system for processing signals for a MEMS detector that enables control of a device using expulsion of air via human breath, a machine and/or a device are provided. A microprocessor may receive one or more signals from the MEMS detector that may comprise various component sensor(s), sensing member(s) or sensing segment(s) that may detect movement of air caused by the expulsion of human breath. The signals may be processed by the microprocessor and an interactive output comprising one or more control signals that may enable control of a user interface such as 107a-107e on the multimedia device 106a-106e may be generated. For each component sensor(s), sensing member(s) or sensing segment(s) in the MEMS detector, ranges or gradients may be measured and evaluated to determine which of the sensor(s), sensing member(s) or sensing segment(s) of the MEMS detector 212 may have been activated, moved or deflected.
Abstract:
A method of controlling an electronic or computer system includes receiving a plurality of input values from a plurality of fluid current sensors and using the plurality of input values and gradients between the plurality of input values to control an action of the electronic or computer system.
Abstract:
A device, to facilitate a user control of a computer system, includes a movable portion movable by a fluid flow of a generated by a user of the device, and a converter to convert movement of the movable portion into an electrical signal to facilitate control of the computer system.
Abstract:
The invention relates to a musical instrument having free reeds set into vibration by a flow of air generated by a supply (17) and capable of flowing from the supply in two directions referred to respectively as in and out, the instrument comprising: at least two boxes (2, 3) that are movable relative to each other by moving towards each other or apart from each other; a series of free reeds (27) mounted inside said boxes; and a valve actuator mechanism (31) where opening and closing the valves enables the reeds to be engaged or not engaged by the flow of air, the mechanism including in particular actuator keys (11) mounted on the moving boxes. The instrument of the invention includes means (5) for supporting and guiding displacement of the boxes relative to each other along a determined trajectory.
Abstract:
A method of controlling an electronic or computer system includes receiving a plurality of input values from a plurality of fluid current sensors and using the plurality of input values and gradients between the plurality of input values to control an action of the electronic or computer system.
Abstract:
The invention relates to a musical instrument having free reeds set into vibration by a flow of air generated by a supply (17) and capable of flowing from the supply in two directions referred to respectively as in and out, the instrument comprising: at least two boxes (2, 3) that are movable relative to each other by moving towards each other or apart from each other; a series of free reeds (27) mounted inside said boxes; and a valve actuator mechanism (31) where opening and closing the valves enables the reeds to be engaged or not engaged by the flow of air, the mechanism including in particular actuator keys (11) mounted on the moving boxes. The instrument of the invention includes means (5) for supporting and guiding displacement of the boxes relative to each other along a determined trajectory.