摘要:
The present invention relates to a preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising: polymerizing 1,3-butadiene or butadiene derivative in the presence of a specific catalyst in a nonpolar solvent to prepare 1,4-cis polybutadiene; and reacting the resultant polybutadiene with an aromatic organosulfur compound. Such prepared aromatic organosulfur functionalized 1,4-cis polybutadiene is without ultrahigh molecular weight region and, thus, has narrow molecular weight distribution.
摘要:
The present invention relates to a preparation method of aromatic organosulfur functionalized 1,4-cis polybutadiene comprising: polymerizing 1,3-butadiene or butadiene derivative in the presence of a specific catalyst in a nonpolar solvent to prepare 1,4-cis polybutadiene; and reacting the resultant polybutadiene with an aromatic organosulfur compound. Such prepared aromatic organosulfur functionalized 1,4-cis polybutadiene is without ultrahigh molecular weight region and, thus, has narrow molecular weight distribution.
摘要:
Disclosed is a process of controlling the degree of branch of high 1,4-cis polybutadiene without any alternation in the 1,4-cis content and the polymerization yield, in which a dialkylzinc compound represented by the following formula I is added in a controlled amount as an agent for controlling the degree of branch of high 1,4-cis polybutadiene, thus guaranteeing the optimum processability and physical properties of polymer according to the use purpose. R1—Zn—R2 Formula I wherein R1 and R2 are same or different and include an alkyl group containing 1 to 5 carbon atoms.
摘要:
A method for preparing polybutadiene having controlled molecular weight and high 1,4-cis content over 95% in the presence of a diethylzinc compound as a cocatalyst (i.e., alkylating agent) and molecular-weight-controlling agent, in which the molecular weight of the polybutadiene is controlled by variating the added amount of the diethylzinc compound without deterioration of 1,4-cis content nor polymerization yield, thus guaranteeing the optimum processability and physical properties of polymer according to the use purpose.
摘要:
The present invention relates to an integrated circuit wiring capable of reducing the contact resistance between lines and a fabricating method thereof. The wiring in accordance with the present invention includes a gate oxide film formed on the upper surface of a semiconductor device. A first line including a first silicon film pattern that is formed on an upper surface of the gate oxide film and has a certain width; and a silicide film pattern that is formed on the upper surface of the first silicon film and has a smaller width than that of the first silicon film pattern to thereby expose a certain region of the first silicon film pattern. A second line is formed to contact the silicide film pattern and the exposed certain region of the silicon film pattern.
摘要:
Disclosed is a novel high 1,4-cis polybutadiene-polyurethane copolymer and a preparation method thereof. The present invention provides a high 1,4-cis polybutadiene-polyurethane copolymer represented by the following formula 1 and having an average molecular weight of at least 100,000, and a method for preparing the high 1,4-cis polybutadiene-polyurethane copolymer that includes polymerizing 1,3-butadiene or butadiene derivatives with a catalyst comprising a rare earth compound, a halogen-containing compound and an organoaluminum compound in the presence of a non-polar solvent, to prepare a polybutadiene having a high 1,4-cis content of at least 95%; and then introducing a polyurethane group to the polybutadiene. The high 1,4-cis polybutadiene-polyurethane copolymer thus obtained exhibits low cold flow and high affinity to silica or carbon black in admixture as well as excellent in elasticity and abrasion resistance: where l, m, n and o represent the number of repeating unit, 1 is 94 to 99%, m is 0 to 5%, n is 0 to 5%, l+m+n=100%, l/(m+n) is 15 to 100, o is 1 to 100%; and A and Y are C1-C20 alkyl or aryl, respectively.
摘要:
The present invention relates to a method for preparing a high 1,4-cis polybutadiene having a controlled cold flow and, more particularly, to a novel method for preparing a high 1,4-cis polybutadiene having a controlled cold flow that involves initiating polymerization of a 1,3-butadiene in the presence of a non-polar solvent using, as a polymerization catalyst, a complex prepared by mixing a neodymium compound with or without a conjugated diene compound, a halogenated organoaluminum compound or a halogenated organic compound, and an organoaluminum compound irrespective of the addition order of the catalyst; and adding an organoborane compound as a cold flow controller of 1,4-cis polybutadiene after a predetermined time of the polymerization. Accordingly, a high 1,4-cis polybutadiene having an efficiently controlled cold flow can be prepared without causing a significant increase in the Mooney viscosity (molecular weight), an odor (bad smell), and a reduction in 1,4-cis content and polymerization yield.
摘要:
This invention relates to a process for polymerizing isobutene using a catalytic system comprising a transition metal compound, a benzene derivative compound, and methylaluminoxane, and the catalytic system applied to the polymerization of isobutene, (1) the added benzene derivative compound and methyl aluminoxane to the transition metal species provides higher stability of cation active site so that polyisobutene with a high molecular weight can be produced even at a higher reaction temperature than the conventional cationic polymerization temperature; (2) nonhalogen solvent such as toluene can be employed as a polymerization solvent instead of halogenated solvents such as methyl chloride; and (3) under the stable catalytic system, a final product with a high yield can be ensured for its long-term use.