Abstract:
A method of making a mask is disclosed. The method includes providing a first and a second mask layers and disposing a first phase shift region on the first mask layer. A second phase shift region is disposed on the second mask layer, wherein the first and second phase shift regions are out of phase. A continuous unit cell is formed in the first phase shift region. The unit cell comprises a center section and distinct extension sections. The extension sections are contiguous to and extend outwards from the center section. The distinct extension sections have a same width as the center section. The second phase shift region is adjacent to the unit cell in the first phase shift region.
Abstract:
The present invention relates to monitoring structures. More particularly, but not exclusively, the invention relates to a monitoring structures suitable for placement on masks. Still more particularly, but not exclusively, the invention relates to monitoring structures suitable for monitoring haze growth on photomasks. Embodiments of the invention provide apparatus for determining presence of contamination on a lithography mask, comprising: a fluid trap, the fluid trap comprising: a base and at least one wall member extending substantially perpendicularly to the base and arranged to trap fluid on a portion of the base when fluid introduced during a cleaning process of the mask is removed.
Abstract:
A structure, a method of fabricating and a method of using a phase shift mask (PSM) having a first phase shifted section, a half tone section, and a second phase shifted section. The first phase shift section and the half tone section are shifted 180 degrees with the second phase shift region. Embodiments provide for (1) a half tone, single trench alternating phase shift mask and (2) a half tone, dual trench alternating phase shift mask. The half tone region provides advantages over conventional alternating phase shift masks.
Abstract:
A new method of avoiding resist notching in the formation of a polysilicon gate electrode in the fabrication of an integrated circuit device is described. Bare active areas are provided surrounded by field oxide isolation on a semiconductor substrate wherein the surface of the substrate has an uneven topography due to the uneven interface between the active areas and the isolation. A polysilicon layer is deposited over the active areas and the field oxide isolation of the substrate. The surface of the polysilicon layer is roughened using a plasma etching process wherein pits are formed on the surface which act as light traps. The roughened polysilicon layer is covered with a layer of photoresist. Portions of the photoresist layer are exposed to actinic light wherein reflection lights from the actinic light are trapped in the pits. The reflection lights do not reflect onto the unexposed portion of the photoresist layer. The photoresist layer is developed and patterned to form the desired photoresist mask for the polysilicon layer wherein the absence of reflection lights reflecting onto the unexposed portion of the photoresist results in the notch-free photoresist mask in the formation of a polysilicon gate electrode in the fabrication of an integrated circuit device.
Abstract:
A method and a device are provided for diffracting incident light from a lithographic scanner in an IC process flow. Embodiments include forming a diffraction grating in a first layer on a semiconductor substrate; and forming a plurality of lithographic alignment marks in a second layer, overlying the first layer, wherein the diffraction grating has a width and a length greater than or equal to a width and length, respectively, of the plurality of lithographic alignment marks.
Abstract:
Apparatus is provided for determining presence of contamination on a lithography mask, including: a fluid trap having a base and at least one wall member extending substantially perpendicularly to the base for trapping fluid on a portion of the base when fluid introduced during a cleaning process of the mask is removed.
Abstract:
A method of making a mask is disclosed. The method includes providing a first and a second mask layers and disposing a first phase shift region on the first mask layer. A second phase shift region is disposed on the second mask layer, wherein the first and second phase shift regions are out of phase. A continuous unit cell is formed in the first phase shift region. The unit cell comprises a center section and distinct extension sections. The extension sections are contiguous to and extend outwards from the center section. The distinct extension sections have a same width as the center section. The second phase shift region is adjacent to the unit cell in the first phase shift region.
Abstract:
A reticle structure and a method of forming a photoresist profile on a substrate using the reticle having a multi-level profile. The reticle comprises (1) a transparent substrate, (2) a partially transmitting 180 degree phase shift film overlying predetermined areas of the transparent substrate to transmit approximately 20 to 70% of incident light, and (3) an opaque film overlying the predetermined areas of the partially transmitting 180 degree phase shift film. The method comprises the following steps: a) depositing a photoresist film over the substrate; b) directing light to the photoresist film through the reticle, and c) developing the photoresist film to form an opening in the resist layer where light only passed thru the substrate, and to remove intermediate thickness of the photoresist film, in the areas where the light passed through the partially transmitting 180 degree phase shift film. In an aspect, the photoresist film is comprised of a lower photoresist layer and an upper photoresist layer. The lower photoresist layer is less sensitive to light than the upper photoresist layer. In an aspect, the resist profile is used to form a dual damascene shaped opening.
Abstract:
A method and a device are provided for diffracting incident light from a lithographic scanner in an IC process flow. Embodiments include forming a diffraction grating in a first layer on a semiconductor substrate; and forming a plurality of lithographic alignment marks in a second layer, overlying the first layer, wherein the diffraction grating has a width and a length greater than or equal to a width and length, respectively, of the plurality of lithographic alignment marks.
Abstract:
Embodiments relate to a method for manufacturing and processing semiconductor devices or integrated circuits (IC) and in particular to the generation of measurement recipes in the manufacturing of the semiconductor devices or ICs. The method comprises defining a sampling plan, mapping target locations of a device contained in the sampling plan to an article/a wafer having a plurality of said devices, verifying the mapping file and processing the verification to produce a measurement recipe. In one embodiment, the measurement recipe is created without having the actual processed wafer.