Abstract:
An apparatus for monitoring machine components includes: a device for acquiring video image files; a data analysis system including processor and memory; a computer program operating in said processor to identify an area in said images where periodic movements associated with a mechanical vibration may be detected and quantified using an adaptive array comparison procedure; and, an interface to output said vibration information in a usable form. The apparatus may further include a graphical user interface and an accessible database. An associated method for using the apparatus is also disclosed
Abstract:
A system and method for safely slowing or controlling a vehicle's speed or engine speed by selectively replacing a genuine engine control signal with a spoofed engine control signal to slow or control the vehicle. The operator is allowed control of the vehicle (e.g. genuine engine control signal) if the speed is below a threshold speed and the operator is denied control of the vehicle (e.g. spoofed engine control signal) if the speed is above the threshold speed; similarly, a maximum idle engine speed and time to idle before shut-down is enforced by selectively replacing a genuine engine control signal with a spoofed engine control signal, responsive to a set threshold for each. The threshold is set over the air (OTA).
Abstract:
A system and method for safely slowing or controlling a vehicle's speed or engine speed by selectively replacing a genuine engine control signal with a spoofed engine control signal to slow or control the vehicle. The operator is allowed control of the vehicle (e.g. genuine engine control signal) if the speed is below a threshold speed and the operator is denied control of the vehicle (e.g. spoofed engine control signal) if the speed is above the threshold speed; similarly, a maximum idle engine speed and time to idle before shut-down is enforced by selectively replacing a genuine engine control signal with a spoofed engine control signal, responsive to a set threshold for each. The threshold is set over the air (OTA).
Abstract:
A process and apparatus for modulating the temperature of an enclosure includes a thermal storage means on a roof portion, and panels positioned above the thermal storage means. One panel is fixed in position, either over the thermal storage means or adjacent thereto. A pair of movable panels are arranged at different levels from the fixed panel and are adapted to move with respect to sides of the fixed panel to cover or expose the thermal storage means for solar heating during the day or cooling at night.
Abstract:
Contactless power and communications links are established between a printer engine and a peripheral device installed on a replaceable printer component. For peripheral devices incorporated within or on the replaceable component, power is inductively transferred from a primary winding on the printer engine to an adjacent secondary winding on the replaceable component without the use of direct physical contact between electrical conductors. In addition, communications between the printer engine and at least one peripheral device on board the replaceable component are provided without making direct physical contact between electrical conductors. The communication task is accomplished in one of several ways. For a first embodiment of the invention, control signals are sent from the printer engine to the replaceable component over the inductive power coupling circuit by switching between two frequencies of alternating current applied to the primary winding on the printing engine. The frequency switching is decoded on board the replaceable component to provide control signals for the peripheral device. For communications in the opposite direction, the peripheral device may send information to the printer engine by modulating a resistive load coupled to the secondary winding. Current flow through the primary winding will vary in response to the load on the secondary winding. The variations in current flow on the printer engine side are decoded to signals which the printer engine comprehends. For a second embodiment of the invention, signals are inductively transmitted across a narrow gap. For a third embodiment of the invention, communications are handled by transmitting and receiving modulated infrared energy across a narrow gap.
Abstract:
This application discloses a thermal ink jet printhead and method of manufacture featuring an improved all-metal orifice plate and barrier layer assembly. This assembly includes constricted ink flow ports to reduce cavitation damage and smooth contoured convergent ink ejection orifices to prevent "gulping" of air during an ink ejection process. Both of these features extend the maximum operating frequency, fmax, of the printhead. The nickel barrier layer and the underlying thin film resistor substrate are gold plated and then soldered together to form a good strong solder bond at the substrate - barrier layer interface.
Abstract:
A corona discharge device for electrophotographic printing is provided in which erasing and primary charging functions are performed by a single device. A screened charging arrangement is used for ion steering, while simultaneous illumination by light produces charge carriers in the photoconducting layer of the drum. In one embodiment, a photochemically etched stainless steel screen is used.
Abstract:
A system for monitoring the condition of a bridge includes: a video camera stably positioned at a selected distance from a bridge and having an unobstructed view of a selected portion of the bridge structure; and, a data processing system to analyze the output of the video camera over a selected time interval and calculate a physical parameter related to movement of the selected portion of said bridge structure as a function of time, and further including: a GUI that displays: a fixed image frame from the video camera, corresponding to a particular user-selected time within the time interval; an area selector, movable by the user to select a portion of the structure for analysis; and, a display of the physical parameter versus time for the selected portion over the selected time interval. The processor may perform some tasks, e.g., area selection, autonomously or via predetermined rules.
Abstract:
An apparatus for visualizing physical movements includes: a device for acquiring video image files; a data analysis system including processor and memory; a computer program operating in the processor to identify an area in the images where periodic motions associated with physical movement of an object may be detected and quantified, and compute a new image sequence in which the motions are visually amplified; and, a user interface that displays the motion-amplified video image of the mechanical component. An associated method for using the apparatus is also disclosed.