摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34 stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34 stem cells used in the instant methods can be genetically, modified or not, depending on the disorder treated.
摘要:
The invention relates to the use of genetically modified, very early haematopoietic and mesenchymal stem cells (negative for the expression of the surface molecule CD34) in the individual gene therapy of mono- or oligogenetic diseases or in cell therapy. Autologous CD34-negative adherently growing stem cell cultures from the peripheral blood of the patient are applied and efficiently tranfected or infected with genetic constructs. The gene products of these genes should substitute defective or absent proteins or factors in the patient organism in the long term. After expansion, the autologous stem cells can also be used for cell therapy (organ replacement therapy).
摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34 stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34 stem cells used in the instant methods can be genetically, modified or not, depending on the disorder treated.
摘要:
The present invention relates to chemokine-mucin fusions linked to glycosylphosphatidylinositol (GPI)-anchors and their use as anti-cancer adjuvants and as agents in tissue regeneration and suppression of vascular damage. GPI-linked chemokines are incorporated in the surface membrane of tumour cells and effect a recruitment of cytotoxic immune cells to the tumour site following injection in vivo. Leukocytes, cytotoxic T-cells and NK cells target the chemokine-GPI-anchored tumour cells and modulate cell-mediated lysis of the tumour cells. The efficiency of GPI-anchoring and modulation of immune cells can be further enhanced by linking the chemokine to a mucin domain followed by the GPI-anchor. The GPI-anchored chemokines, with or without mucin domain, are remarkably useful for the inhibition of tumour growth, tissue regeneration, and suppression of acute vascular damage to allografts.
摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34 stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34 stem cells used in the instant methods can be genetically, modified or not, depending on the disorder treated.
摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34− stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34− stem cells used in the instant methods can be genetically modified or not, depending on the disorder treated.
摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34− stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34− stem cells used in the instant methods can be genetically modified or not, depending on the disorder treated.
摘要:
The present invention relates to fusion constructs of glycosylphosphatidylinositol (GPI)-anchored tissue inhibitors of metalloproteinases (TIMPs) and their use for the treatment of cancer and in regenerative medicine. By this approach, the GPI-anchored TIMP proteins are incorporated into the surface membrane of tumor cells and render tumor cells sensitive to FAS-induced apoptosis. Furthermore, the fusion constructs of the present invention are effective agents useful in wound healing applications. In one embodiment, the TIMP is linked to mucin followed by GPI in order to enhance surface presentation. The use of GPI to link TIMP renders the resulting fusion protein particularly useful as an anti-cancer agent for the treatment of cancer, and, in particular, any residual cancer following an incomplete surgical resection of primary tumors in an individual.
摘要:
This invention provides novel stem cell-based methods for treating a number of conditions. These methods employ CD34− stem cells, and have a tremendous advantage in that they do not require myeloablation in the subject being treated. The CD34− stem cells used in the instant methods can be genetically modified or not, depending on the disorder treated.
摘要:
The present invention relates to fusion constructs of glycosylphosphatidylinositol (GPI)-anchored tissue inhibitors of metalloproteinases (TIMPs) and their use for the treatment of cancer and in regenerative medicine. By this approach, the GPI-anchored TIMP proteins are incorporated into the surface membrane of tumor cells and render tumor cells sensitive to FAS-induced apoptosis. Furthermore, the fusion constructs of the present invention are effective agents useful in wound healing applications. In one embodiment, the TIMP is linked to mucin followed by GPI in order to enhance surface presentation. The use of GPI to link TIMP renders the resulting fusion protein particularly useful as an anti-cancer agent for the treatment of cancer, and, in particular, any residual cancer following an incomplete surgical resection of primary tumors in an individual.