Abstract:
The present invention is directed to a process for the manufacture of a blow molded container comprising a physical geometry that creates more than one undercut and a means for removal of said container from a mold used to form said container.
Abstract:
A first component which assembles onto an outlet opening of a container and provides a seal; the first component containing a snap component to engage to a second component to form a closure; a second component combined with first component forms a dispensing orifice wherein the dispensing orifice is positioned directly adjacent to the open portion of container outlet; a motion of second component pivots about an axis to open a dispensing orifice; wherein second component engages with first component when second component is moved relative to first component to enable operation of orifice; first component comprising one or more elements being in a specific juxtaposition enabling a small height and a low profile for one or more elements of first component; the element(s) being in the plane or below the plane of the outlet of the container.
Abstract:
An injection mold assembly for a high output consumer product injection molding machine, the injection mold assembly having a simplified cooling system that is an evaporative cooling system or a cooling system including a hazardous, dangerous, or expensive cooling fluid. The simplified cooling system has a cooling fluid channel that is confined to a mold support plate.
Abstract:
A low constant pressure injection molding machine forms molded parts by injecting molten thermoplastic material into a mold cavity at low substantially constant pressures of 6,000 psi and less. As a result, the low constant pressure injection molding machine includes a mold formed of easily machineable material that is less costly and faster to manufacture than typical injection molds.
Abstract:
A low constant pressure injection molding machine forms molded parts by injecting molten thermoplastic material into a mold cavity at low constant pressures of 6,000 psi and lower. As a result, the low constant pressure injection molding machine includes a mold formed of easily machineable material that is less costly and faster to manufacture than typical injection molds.
Abstract:
A low constant pressure injection molding machine forms molded parts by injecting molten thermoplastic material into a mold cavity at low substantially constant pressures of 6,000 psi and less. As a result, the low constant pressure injection molding machine includes a mold formed of easily machineable material that is less costly and faster to manufacture than typical injection molds.
Abstract:
Disclosed herein are methods of injection molding at low, substantially constant melt pressures. Embodiments of the disclosed method now make possible a method of injection molding that is more energy—and cost—effective than conventional high-velocity injection molding processes. Embodiments of the disclosed method surprisingly allow for the filling of a mold cavity at low melt pressure without undesirable premature hardening of the thermoplastic material in the mold cavity and without the need for maintaining a constant temperature or heated mold cavity. Heretofore, it would not have been expected that a constant pressure method could be performed at low pressure without such premature hardening of the thermoplastic material when using an unheated mold cavity or cooled mold cavity.
Abstract:
Disclosed herein is a method of injection molding at low, substantially constant melt pressures. Embodiments of the disclosed method now make possible a method of injection molding that is more energy—and cost—effective than conventional high-velocity injection molding processes. Embodiments of the disclosed method surprisingly allow for the filling of a mold cavity at low melt pressure without undesirable premature hardening of the thermoplastic material in the mold cavity and without the need for maintaining a constant temperature or heated mold cavity. Heretofore, it would not have been expected that a constant pressure method could be performed at low pressure without such premature hardening of the thermoplastic material when using an unheated mold cavity or cooled mold cavity.
Abstract:
Disclosed herein are methods of injection molding at low, substantially constant melt pressures. Embodiments of the disclosed method now make possible a method of injection molding that is more energy—and cost—effective than conventional high-velocity injection molding processes. Embodiments of the disclosed method surprisingly allow for the filling of a mold cavity at low melt pressure without undesirable premature hardening of the thermoplastic material in the mold cavity and without the need for maintaining a constant temperature or heated mold cavity. Heretofore, it would not have been expected that a constant pressure method could be performed at low pressure without such premature hardening of the thermoplastic material when using an unheated mold cavity or cooled mold cavity.