Abstract:
A method for magnetizing a rotor of an electrical machine is provided. The method includes assembling an array of non-magnetized anisotropic permanent magnet segments around a rotor spindle encased in a metallic ring. The method also includes determining multiple optimal magnetization orientation directions of the non-magnetized anisotropic permanent magnet segments. Further, the method includes positioning the assembled non-magnetized anisotropic permanent magnet segments around the rotor spindle such that the optimal magnetization orientation directions of the anisotropic permanent magnet segments are aligned with multiple flux lines produced by a magnetization fixture. Finally, the method includes energizing the magnetization fixture for magnetizing the segments via a pulse direct current for an optimal duration of the pulse.
Abstract:
A compressor assembly for use in transporting natural gas is provided. The assembly includes a natural gas compressor comprising at least one stage of compression, a permanent magnet-type super-synchronous motor coupled to the natural gas compressor for powering said compressor, and a housing, the compressor positioned within the housing, and the compressor configured to facilitate increasing a pressure of natural gas being transmitted.
Abstract:
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
Abstract:
The machine includes a rotor with an inner rotor core and an outer rotor core and a double-sided stator with an inner stator side and an outer stator side. The double-sided stator is concentrically disposed between the inner rotor core and the outer rotor core of the wind turbine generator. The double-sided stator is configured to enable at least a portion of magnetic flux to be shared between the inner stator side and the outer stator side. Examples of particularly useful embodiments for the machine include wind turbine generators and ship propulsion motors.
Abstract:
A machine useful for ship propulsion purposes includes a ship propulsion motor with two concentric air gaps. In one embodiment, the machine includes a rotor with an inner rotor core and an outer rotor core; and a double-sided stator with an inner stator side and an outer stator side. The double-sided stator is concentrically disposed between the inner rotor core and the outer rotor core.
Abstract:
An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.
Abstract:
A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.
Abstract:
A synchronous reluctance machine that has a stator and a rotor shaft operationally disposed within the confines of the stator. Laminations are axially stacked to form boat shaped segments. A plurality of selected boat shaped segments form a selected number of rotor poles about the rotor shaft and a plurality of support bars disposed intermittently between the boat shaped segments. Each segment of lamination is boat shaped with angular acuity facing towards the stator.
Abstract:
A rotor assembly is provided in which the rotor assembly includes a first core portion, wherein the first core portion has at least one first core protrusion, and a second core portion, wherein the second core portion has at least one second core protrusion. The first core portion and the second core portion are configured to be matingly coupled to each other so as to form an assembled rotor assembly. In addition, the rotor assembly includes a number of magnetizable members wherein respective ones of the magnetizable members are coupled to each of the first core protrusions and coupled to each of the second core protrusions. The magnetizable members are adapted to be coupled to a magnetizing fixture prior to mating the first and second core portions so as to magnetize the magnetizable members.
Abstract:
A method for magnetizing a rotor of an electrical machine is provided. The method includes assembling an array of non-magnetized anisotropic permanent magnet segments around a rotor spindle encased in a metallic ring. The method also includes determining multiple optimal magnetization orientation directions of the non-magnetized anisotropic permanent magnet segments. Further, the method includes positioning the assembled non-magnetized anisotropic permanent magnet segments around the rotor spindle such that the optimal magnetization orientation directions of the anisotropic permanent magnet segments are aligned with multiple flux lines produced by a magnetization fixture. Finally, the method includes energizing the magnetization fixture for magnetizing the segments via a pulse direct current for an optimal duration of the pulse.